Numerical Experiments on the Terrain Following Strong Wind Phenomenon Effecting to the Onset of Sea Breeze

해풍시작에 영향을 미치는 지형성 강풍현상에 대한 수치실험

  • Lee, Hwa-Woon (Department of Atmospheric Sciences, Pusan National University) ;
  • Jung, Woo-Sik (Department of Atmospheric Sciences, Pusan National University)
  • Published : 2003.06.30

Abstract

The onset time of sea breeze at Haeundae is faster than that at Suyoung in spite of the observation site at Suyoung being 5m and that of Haeundae being 1 km away from the coastline. We therefore simulate the effects of terrain on the onset time of sea breeze at Suyoung and Haeundae districts by using the LCM(Local Circulation Model). This phenomenon is due to the nighttime density flow, which is created by nighttime radiative cooling. It follows the slope of the highlands surrounding the urban area, gathers at a central area of Busan, and then flows out to a lower area like Suyoung river. This process continues after sunrise. In researching the AWS wind speed, we find an important thing. That is to say, the nighttime mean wind speed at Suyoung is three times greater than that at Haeundae. This property shows that Suyoung is an outflow channel of nighttime air mass. The above observed data shows that terrain effect has a important role on the onset of sea breeze.

관측지점의 위치를 살펴보면 해안으로부터 수영은 약 5m정도이고 해운대는 약 1km정도 떨어져 있다. 하지만 해운대에서의 해풍시작시간이 수영보다 빨리 나타난다. 따라서 국지순환모형인 LCM을 이용하여 수영과 해운대에서 해풍시작시간에 대한 지형의 효과를 수치모의 하였다. 이러한 현상은 야간의 복사냉각에 의해 형성된 흐름에 의한 것으로 분석되었는데, 도심지를 둘러싸고 있는 고지대의 경사면을 따라서 수렴된 공기가 가장 저지대인 수영지역으로 흘러가기 때문에 나타난 것으로 이러한 현상은 일출 후에도 나타난다. AWS자료를 분석한 결과, 수영에서 해운대에 비해 약 3배정도 강한 강풍현상이 나타났는데, 이는 수영지역이 야간공기의 유출구이기 때문이다. 이를 통해 지형조건이 해풍의 시작에 중요한 역할을 한다는 것을 알 수 있었다.

Keywords

References

  1. 이승우, 이동규, 1998, 수도권 지역에서 지표 및 지형 효과 에 따른 국지규모 대기순환의 수치실험, 한국기상학회지, 34(1), 1-19
  2. 이화운, 김유근, 정우식, 2000, 연안부근 복잡지형의 대기유동장 수치실험 1 -선형이론을 이용한 국지순환 모형의 타당성 검토 -, 한국환경과학회지, 8(5), 555-558
  3. 현종훈, 이동규, 1990, 3차원 중규모 모델을 이용한 제주도 에서의 해륙풍 모의. 한국기상학회지, 26(2), 121-136
  4. Banta, R., and W. R. Cotton, 1981, An analysis of the structure of local wind systems in a broad mountain basin, Journal of Applied Meteorology, 20, 1255-1266 https://doi.org/10.1175/1520-0450(1981)020<1255:AAOTSO>2.0.CO;2
  5. Bossert, J. E., 1997, An Investigation of Flow Regimes Affecting the Mexico City Region, Journal of Applied Meteorology, 36, 119-140 https://doi.org/10.1175/1520-0450(1997)036<0119:AIOFRA>2.0.CO;2
  6. Helmis, C. G., D. N. Asimakopoulos, and D. G. Deligiorgi, 1987, Observations of Sea-Breeze Fronts Near the Shoreline, Boundary-Layer Meteorology, 38, 395-410 https://doi.org/10.1007/BF00120854
  7. Kang, S.-D., F. Kimura, and S. Takahashi, 1998, A Numerical study in the Karman vortex generated by divergence of momentum flux in flow past an isolated mountain, Journal of Meteorological Society of Japan, 76, 925-935 https://doi.org/10.2151/jmsj1965.76.6_925
  8. Mellor, G, L., and Yamada, T, 1982, Development of a turbulence closure models for geophysical fluid problems, Rev. Geophysical Space Physics, 20, 851-875 https://doi.org/10.1029/RG020i004p00851
  9. Muller, H., and C. D. Whiteman, 1988, Breakup of a Noctumal Temperature Inversion on the Dischma Valley during DISKUS, Journal of Applied Meteorology, 27, 188-194 https://doi.org/10.1175/1520-0450(1988)027<0188:BOANTI>2.0.CO;2
  10. Kimura, F., 1986, Formation Mechanism of the Noctumal Mesoscale Vortex in Kanto Plain, Journal of Meteorological Society of Japan, 64, 857-869 https://doi.org/10.2151/jmsj1965.64.6_857
  11. Kimura, F. and S. Arakawa, 1983, A numerical expehment of the noctumal low level jet over the Kanto Plain, Journal of Meteorological Society of Japan, 61, 848-861 https://doi.org/10.2151/jmsj1965.61.6_848
  12. Kimura, F. and T. Kuwagata, 1993, Thermally Induced Wind Passing from Plain to Basin over a Mountain Range, Journal of Applied Meteorology, 32, 1538-1547 https://doi.org/10.1175/1520-0450(1993)032<1538:TIWPFP>2.0.CO;2
  13. Kikuchi, Y, 1975, Kairikufu no suchi simulation (Numerical simulation of land and sea breeze), Kisho-Kenkyu Note, 125, 21-49
  14. Klemp, J. B., and D. R. Durran, 1983, An Upper Boundary Condition Permitting Intemal Gravity Wave Radiation in Numerical Mesoscale Models, Monthly Weather Review, 111, 430-444 https://doi.org/10.1175/1520-0493(1983)111<0430:AUBCPI>2.0.CO;2
  15. Orlanski, I., 1976, A simple boundary condition for unbounded hyperbolic flows, Journal of Computational Physics, 21, 251-269 https://doi.org/10.1016/0021-9991(76)90023-1
  16. Sakiyama, S. K., 1990, Drainage Flow Characteristics and Inversion Breakup in Two Alberta Mountain Valleys, Journal of Applied Meteorology, 29, 1015-1030 https://doi.org/10.1175/1520-0450(1990)029<1015:DFCAIB>2.0.CO;2
  17. Stephan, F. J. De Wekker, Z. Shiyuan, D. F. Jerome, and W. David, 1998, A Numerical Study of the Thermally Plain-to-Basin Wind over Idealized Basin Topographies, Journal of Applied Meteorology, 37, 606-622 https://doi.org/10.1175/1520-0450(1998)037<0606:ANSOTT>2.0.CO;2