DOI QR코드

DOI QR Code

Thermoelastic deformation and stress analysis of a FGM rectangular Plate

경사기능재료 사각 판의 열 탄성 변형과 응력 해석

  • 김귀섭 (인하공업전문대학 항공기계과)
  • Published : 2003.02.01

Abstract

A Green's function approach is adopted for analyzing the thermoelastic deformation and stress analysis of a plate made of functionally graded materials (FGMs). The solution to the 3-dimensional steady temperature is obtained by using the laminate theory. The fundamental equations for thermoelastic problems are derived in terms of out-plane deformation and in-plane force, separately. The thermoelastic deformation and the stress distributions due to the bending and in-plane forces are analyzed by using a Green’Às function based on the Galerkin method. The eigenfunctions of the Galerkin Green's function for the thermoelastic deformation and the stress distributions are approximated in terms of a series of admissible functions that satisfy the homogeneous boundary conditions of the rectangular plate. Numerical examples are carried out and effects of material properties on thermoelastic behaviors are discussed.

경사기능재료 판에 대한 열탄성 변형과 응력 해석을 위해 Green 함수 방법이 채택되었다. 3차원 정상 온도분포에 대한 해는 적층판 이론에 의해 얻어진다. 열탄성 문제에 대한 기본 방정식은 각각 평면의(out-plane) 변형과 평면내(in-plane) 힘에 의해 유도되었다. 굽힙과 평면내 힘으로 인한 열탄성 변형과 응력분포는 Galerkin 방법에 근거한 Green 함수를 이용하여 해석되었다. 열탄성 변형과 응력분포 해석을 위한 Galerkin Green 함수의 특성함수들은 사각판의 제차 경계조건을 만족시키는 허용함수들의 급수 형태로 근사화 되었다. 수치예제가 수행되었으며, 경사기능재료의 물성치가 판의 열탄성 거동에 미치는 영향이 검토되었다.

Keywords

References

  1. Y. Obata, N. Noda, " Unsteady thermal stresses in a functionally gradient material plate (Analysis of one-dimensional unsteady heat transfer problem)". Trans. of the JSME, Series A 59, 560, (1993) 1090-1096 (in Japanese) https://doi.org/10.1299/kikaia.59.1090
  2. Y. Obata, N. Noda, "Steady thermal stresses in a hollow circular cylinder and a hollow sphere of a functionally gradient material". J. Thermal Stresses 17, 4, (1994) 471-487 https://doi.org/10.1080/01495739408946273
  3. Y. Tanigawa, "Some basic thermoelastic problems for nonhomogeneous structural materials". Trans. of ASME. J. of Applied Mechanics 48, 6, (1995) 287-300 https://doi.org/10.1115/1.3005103
  4. Y. Ootao, Y. Tanigawa, "Three dimensional transient thermal stress analysis of a nonhomogeneous hollow sphere with respect to rotating heat source". Trans. of JSME, Series A 60, 578, (1994) 2273-2279(in Japanese) https://doi.org/10.1299/kikaia.60.2273
  5. Y. Tanigawa, T. Akai, R. Kawamura and N. Oka, " Transient heat conduction and thermal stress problems of a nonhomogeneous plate with temperature-dependent material properties". J. of Thermal Stresses 19, (1996) 77-102 https://doi.org/10.1080/01495739608946161
  6. R. Diaz and S. Nomura, "Numerical Green's function approach to finite-sized plate analysis". Int. J. of Solids and Structures 33, (1996) 4215-4222 https://doi.org/10.1016/0020-7683(95)00244-8
  7. S. Nomura and D. M. Sheahen, " Green's function approach to the analysis of functionally graded materials". ASME MD-80, (1997) 19-23
  8. K. S. Kim and N. Noda, "Green's function approach to solution of transient temperature for thermal stresses of functionally graded material". International Journal of JSME, Series A, Vol. 44, No. 1, 2001, pp. 31-36. https://doi.org/10.1299/jsmea.44.31
  9. K. S. Kim and N. Noda, "Green's function approach to three-dimensional heat conduction equation of functionally graded materials", Journal of Thermal Stresses". Vol. 24, No. 5, 2001, pp. 457-477. https://doi.org/10.1080/01495730151126113
  10. K. S. Kim and N. Noda, "A Greens Function Approach to the Deflection of a FGM Plate under Transient Thermal Loading ". Archive of Applied Mechanics Vol. 72, No. 2-3, April 2002, pp. 127-137 https://doi.org/10.1007/s00419-002-0172-6
  11. R. Kawamura, D. Huang and Y. Tanigawa, "Thermoelastic deformation and stress analyses of an orthotropic nonhomogeneous rectangular plate. Fourth Int. Con. on Thermal stresses". pp 189-192, 2001.
  12. T. Akai, R. Kawamura and Y. Tanigawa, "Thermal stress analysis for nonhomogeneous rectangular plate". Fourth Int. Con. on Thermal stresses, pp 625-628, 2001.