Effects of Liquid Pig Manure Application on Rice Growth and Environment of Paddy Soil

돈분뇨 액비 시용이 벼의 생육 및 논 토양 환경에 미치는 영향

  • Jeon, Weon-Tai (National Yeongnam Agricultural Experiment Station, RDA) ;
  • Park, Hyang-Mi (National Yeongnam Agricultural Experiment Station, RDA) ;
  • Park, Chang-Yeong (National Yeongnam Agricultural Experiment Station, RDA) ;
  • Park, Ki-Do (National Yeongnam Agricultural Experiment Station, RDA) ;
  • Cho, Young-Son (National Yeongnam Agricultural Experiment Station, RDA) ;
  • Yun, Eul-Soo (National Yeongnam Agricultural Experiment Station, RDA) ;
  • Kang, Ui-Gum (National Yeongnam Agricultural Experiment Station, RDA)
  • Received : 2003.08.05
  • Accepted : 2003.10.07
  • Published : 2003.10.30

Abstract

This experiment was carried out to improve the utilization of liquid pig manure (LPM) for rice at the two textures of valley soil in 2000 and 2001. The soil textures were coarse loamy and fine loamy in Sachon and Jisan series, respectively. Treatments consisted of no fertilized plot, chemical fertilized plot, LPM 150%, LPM 100%, LPM 100%+NK (top dressing) 30%, LPM 70%+NK 30%, LPM 50%+NK 50% plot. LPM was applied as basal fertilizer compare to nitrogen of chemical fertilized plot. Total N contents in the LPM were 6.0 and $4.5g\;kg^{-1}$ in 2000 and 2001, respectively. After the experiment, P and K contents of soils were not difference between chemical and LPM application plots. But heavy metal contents in soils were slightly higher in LPM application plots than in chemical fertilized plot. Immediately after LPM application, ammonia gas content was $18mg\;kg^{-1}$ in LPM 150% plot, but it was $3mg\;kg^{-1}$ in LPM 50% plot. Two days after LPM application, ammonia gas content was 3 times higher in coarse loamy than in fine loamy soil. After rotary tillage, ammonia gas was not detected at all LPM treatments. This result suggests that rotary tillage can reduce the nasty smell of LPM quickly. Inorganic nitrogen, $NO_3$ and $NH_4$, contents in water of paddy was higher at coarse loamy soil from rice transplanting to tillering stage. After that season, inorganic nitrogen contents of water were not different according to soil texture and treatments. Content of $NH_4-N$ in soil solution was higher at LPM plots than chemical fertilizer plot. Total nitrogen contents in rice plant after harvesting were higher at chemical fertilization plot than LPM application plot, but K contents showed an opposite tendency. Rice yield was decreased only in LPM plots at two soil textures. But yield was not significantly difference between chemical fertilizer and LPM+top dressing plots at coarse loamy soil and increased 5% at LPM 50%+NK 50% plot at fine loamy soil in 2001.

가축분뇨의 친환경적 농경지 환원의 기초 자료를 얻고자 곡간지 논 두 토성에서 2년간 돈분뇨 액비를 논토양에 시용하여 토양, 수질, 악취 및 벼 생육과 수량 특성을 조사한 결과는 다음과 같다. 공시재료(액비)의 총질소 함량은 2000년에는 $6.0g\;kg^{-1}$, 2001년에는 $4.5g\;kg^{-1}$이였다. 시험 후 토양의 화학성은 화학비료구와 액비처리구 간에 큰 차이가 없었고, 중금속 함량은 액비처리구에서 다소 높았으나 우려기준 이하이었다. 액비 살포 후 경시적인 암모니아 가스발생은 살포량이 많을수록 높았으며, 살포당일에 가장 높았고 로터리 작업 후에는 거의 발생하지 않았다. 액비살포 1일 후의 암모니아 발생 농도는 사양질이 식양질보다 약 3배 높았다. 토심 60 cm에서의 토양용액 중 $NH_4-N$은 화학비료구보다 액비시용구에서 시기가 경과함에 따라서 높아지는 경향이었다. 이앙초기에 논의 표면수 중 무기태 질소 함량은 사양질의 경우 액비 150% 시용구, 액비 100%, 액비 100%+추비구에서 높았고, 식양질의 경우는 화학비료구와 질소전량의 액비 150% 시용구에서 가장 높았으나, 분얼기 이후 무기태 질소함량은 토성과 처리간에 차이가 없었다. 벼의 경수는 전반적으로 액비시용구보다 화학비료구에서 많은 경향이었다. 식물체중 전질소 함량은 액비처리구보다 화학비료구에서 높은 경향이었고, 칼륨의 함량은 액비+추비구에서 높은 경향이었다. 벼의 수량은 두 토성 모두 화학비료구보다 액비단용 처리구에서 감수되었으나, 사양질에서는 화학비료구와 액비+NK 추비구간에 차이가 없었으며, 식양질에서는 액비 50%+50% NK 추비구 에서 5% 증수되었다.

Keywords

References

  1. Bernal, M. P., and H. Kirchman. 1992. Carbon and nitrogen mineralization and ammonia volatilization from fresh, aerobically and anaerobically treated pig manure during incubation with soil. Biol. Fert. Soils 13:135-141
  2. Choudhary, M., L. D. Bailey, and C. A. Grant. 1994. Review of the use of swine manure in crop production : Effects on yield and composition and on soil and water quality. Waste Manage. Res. 16:581-595
  3. Hur, B. K., S. K. Rim, Y. H. Kim, and K. Y. Lee. 1997. Physico-chemical properties on the management groups of paddy soils in Korea. J. Korean Soc. Soil Sci. Fert. 30:62-66
  4. Kim, B. Y., B. K. Jung, J. W. Choi, E. S. Yun, and S. Choi. 1995. Heavy metals in paddy soil of Korea. J. Korean Soc. Soil Sci. Fert. 28:295-300
  5. Klausner. S. D., V. R. Kamnerganti, and D. R. Bouldin. 1994. An approach for estimating a decay series for organic nitrogen in animal manure. Agron. J. 86:897-903 https://doi.org/10.2134/agronj1994.00021962008600050026x
  6. Lauer, D. A., D. R. Bouldin, and S. D. Klausner. 1976. Ammonia volatilization from dairy manure spread on the soil surface. J. Environ. Qual. 5:134-141 https://doi.org/10.2134/jeq1976.00472425000500020005x
  7. Moller H. B., S. G. sommer, and B. K. Ahring. 2002. Separation efficiency and panicle size distribution in relation to manure type and storage condition. Bioresource Technol. 85:189-196 https://doi.org/10.1016/S0960-8524(02)00047-0
  8. NIAST. 1999. Manufacture and utilization of compost and liquid of livestock manure for environmental agriculture. National Institute of Agricultural Science and Technology, Suwon, Korea
  9. NYAES. 2000. Research plan. National Yeongnam Agricultural Experiment Station, Milyang, Korea
  10. Park, B. K., J. S. Lee, N. J. Cho, and K. Y. Jung. 2001a. Effect of liquid pig manure on growth of rice and infiltration water quality. J. Korean Soc. Soil Sci. Fert. 34:153-157
  11. Park, B. K., J. S. Lee, N. J. Cho, and K. Y. Jung. 2001b. Effect of application time and amount of liquid pig manure on growth of lice and infiltration water quality. J. Korean Soc. Soil Sci. Fert. 34:147-151
  12. Park, K. H., and J. L, Son. 1995. Analytical methods for air pollution. Hyungseul, Seoul, Korea
  13. Peter S., and M. Amato. 2002. Remineralisation and residural effects of N after application of pig slurry to soil. Eur. J. Agron. 16:81-95 https://doi.org/10.1016/S1161-0301(01)00119-8
  14. RDA. 1988. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, Rural Development Administration, Suwon, Korea
  15. RDA. 1992. Report of soil survey in Korea. 2nd ed. National Institute of Agricultural Science and Technology, Rural Development Administration, Suwon, Korea
  16. RDA. 1995. Standard methods for agricultural experiment. Rural Development Administration, Suwon, Korea
  17. RDA. 1999. Standard of fertilizer description by crops. National Institute of Agricultural Science and Technology, Rural Development Administration, Suwon, Korea
  18. RDA. 2002. Guidelines for applying livestock manure (Liquid pig manure). Rural Development Administration, Suwon, Korea
  19. Sommer, S. G., J. E. Olesen, and B. T. Christensen. 1991 Effects of temperature, wind speed and air humidity on ammonia volatilization from surface applied cattle slurry. J. Agr. Sci. 117:91-100 https://doi.org/10.1017/S0021859600079016
  20. Van Delden, A., J. J. Schroder, M. J. Krooff, C. Grashoff, and R. Booij. 2003. Simulated potato yield, and crop and soil nitrogen dynamics under different organic nitrogen management strategies in The Netherlands. Agr. Ecosyst. Environ. 96:77-95 https://doi.org/10.1016/S0167-8809(03)00012-4
  21. Zhang, R. H., and P. W. Westerman. 1997. Solid-liquid separation of animal manure odor control and nutrient management. Appl. Eng. Agric. 13:1-11