DOI QR코드

DOI QR Code

Dehydration of Methanol to Dimethyl Ether over ZSM-5 Zeolite

  • Jiang, Shan (Catalysis Center for Molecular Engineering, Korea Research Institute of Chemical Technology, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology) ;
  • Hwang, Jin-Soo (Catalysis Center for Molecular Engineering, Korea Research Institute of Chemical Technology) ;
  • Jin, Tai-Huan (Catalysis Center for Molecular Engineering, Korea Research Institute of Chemical Technology) ;
  • Cai, Tianxi (Department of Chemistry, School of Chemical Engineering, Dalian University of Technology) ;
  • Cho, Wonihl (LNG Technology Research Center, R & D Division, Korea GAs Co.) ;
  • Baek, Young-Soon (LNG Technology Research Center, R & D Division, Korea GAs Co.) ;
  • Park, Sang-Eon (Department of Chemistry, Inha University)
  • Published : 2004.02.20

Abstract

Methanol dehydration to dimethyl ether (DME) has been investigated over ZSM-5 zeolites and compared with that of ${\gamma}-Al_2O_3$. Although the catalytic activity was decreased with an increase in silica/alumina ratio, the DME selectivity increased. H-ZSM-5 and NaH-ZSM-5 zeolites were more active for conversion of methanol to DME than ${\gamma}-Al_2O_3$. $Na^+$ ion-exchanged H-ZSM-5 (NaH-ZSM-5) shows higher DME selectivity than H-ZSM-5 due to the selective removal of strong acid sites.

Keywords

References

  1. Shikada, T.; Fuimoto, K.; Miyauchi, M.; Todriaga, H. Appl. Catal.1983, 7, 361. https://doi.org/10.1016/0166-9834(83)80035-9
  2. Kaeding, W. W.; Butter, S. A. J. Catal. 1980, 61, 155. https://doi.org/10.1016/0021-9517(80)90351-6
  3. Chang, C. D. Cat. Rev. Sci. Eng. 1983, 25, l.
  4. Xu, M.; Lunsford, J. H.; Goodman, D. W. Appl. Catal. A: Gen. 1997, 149, 289. https://doi.org/10.1016/S0926-860X(96)00275-X
  5. Jun, K.-W.; Lee, H. S.; Roh, H. S.; Park, S.-E. Bull. Korean Chem. Soc. 2003, 24, 106. https://doi.org/10.1007/s11814-007-5018-z
  6. Xu, M.; Goodman, D. W. Appl. Catal. A 1997, 149, 303. https://doi.org/10.1016/S0926-860X(96)00276-1
  7. Bohaeun, L. J. M. Aerosol Rep. 1979, 18, 413.
  8. Hansen, J. B.; Joensen, F. H.; Topsoe, H. F. A. US patent 5189203 (1993).
  9. Ge, Q. J.; Huang, Y. M.; Qiu, F. Y.; Li, S. B. Appl. Catal. A: Gen.1997, 167, 23.
  10. Li, J.-L.; Zhang, X.-G.; Inui, T. Appl. Catal. A: Gen. 1996, 147, 23. https://doi.org/10.1016/S0926-860X(96)00208-6
  11. Woodhouse, J. C. US patent, 2014408 (1935).
  12. Bandiera, J.; Naccache, C. Appl. Catal. 1991, 69, 139. https://doi.org/10.1016/S0166-9834(00)83297-2
  13. Kubelkova, L.; Novakova, J.; Nedomova, K. J. Catal. 1990, 124,441. https://doi.org/10.1016/0021-9517(90)90191-L
  14. Blaszkowski, S. R.; Van Santen, R. A. J. Am. Chem. Soc. 1996,118, 5152. https://doi.org/10.1021/ja954323k
  15. Fleish, T.; McCarthy, C.; Basu, A.; Udovich, C.; Charbonneau, P.;Slodowski, W. DAE International Congress; Detroit, 1995; SAEPaper 950064.
  16. Topoe, N.-Y.; Pedersen, K.; Derouane, G. J. Catal. 1981, 70, 41. https://doi.org/10.1016/0021-9517(81)90315-8
  17. Sun, Y.; Campbell, S. M.; Lunsford, J. H.; Lewis, G. E.; Palke, D.;Tau, L. M. J. Catal. 1993, 143, 32. https://doi.org/10.1006/jcat.1993.1251
  18. Chen, N. Y.; Reagan, W. J. J. Catal. 1979, 59, 123. https://doi.org/10.1016/S0021-9517(79)80050-0
  19. Hidalgo, V.; Itoh, H.; Hattori, T.; Niwa, M.; Murakami, Y. J.Catal. 1984, 85, 362. https://doi.org/10.1016/0021-9517(84)90225-2
  20. Bhat, Y. S.; Das, J.; Halgeri, A. B. Appl. Catal. A: Gen. 1995, 122,161. https://doi.org/10.1016/0926-860X(94)00235-5

Cited by

  1. Synthesis of methanol and dimethyl ether from syngas over Pd/ZnO/Al2O3 catalysts vol.2, pp.10, 2012, https://doi.org/10.1039/c2cy20315d
  2. Synthesis of highly porous nanocrystalline alumina as a robust catalyst for dehydration of methanol to dimethyl ether vol.20, pp.1, 2013, https://doi.org/10.1007/s10934-012-9584-z
  3. Influence of Montmorillonite K10 Modification with Tungstophosphoric Acid on Hybrid Catalyst Activity in Direct Dimethyl Ether Synthesis from Syngas vol.144, pp.11, 2014, https://doi.org/10.1007/s10562-014-1359-5
  4. Kinetic Analysis of Methanol to Dimethyl Ether Reaction over H-MFI Catalyst vol.53, pp.38, 2014, https://doi.org/10.1021/ie502775u
  5. Catalytic activity of natural zeolites in the conversion of methanol to dimethyl ether vol.54, pp.2, 2014, https://doi.org/10.1134/S0965544114020054
  6. Dehydration of Methanol to Dimethyl Ether over Heteropoly Acid Catalysts: The Relationship between Reaction Rate and Catalyst Acid Strength vol.5, pp.12, 2015, https://doi.org/10.1021/acscatal.5b01911
  7. Effect of the Acidity of Ca,H-Bea Zeolites on Their Catalytic Characteristics in the Dimethyl Ether Production from Methanol vol.51, pp.5, 2015, https://doi.org/10.1007/s11237-015-9433-7
  8. A Hierarchically Micro-Meso-Macroporous Zeolite CaA for Methanol Conversion to Dimethyl Ether vol.6, pp.11, 2016, https://doi.org/10.3390/cryst6110155
  9. Catalyst Deactivation During One-Step Dimethyl Ether Synthesis from Synthesis Gas vol.147, pp.4, 2017, https://doi.org/10.1007/s10562-017-1971-2
  10. Effect of pressure on direct synthesis of DME from syngas over metal-pillared ilerites and metal/metal-pillared ilerites vol.25, pp.3, 2008, https://doi.org/10.1007/s11814-008-0079-1
  11. Synthesis of Dimethyl Ether over Modified H-Mordenite Zeolites and Bifunctional Catalysts Composed of Cu/ZnO/ZrO2 and Modified H-Mordenite Zeolite in Slurry Phase vol.129, pp.1-2, 2009, https://doi.org/10.1007/s10562-008-9779-8
  12. Pore network model for catalytic dehydration of methanol at particle level vol.55, pp.2, 2009, https://doi.org/10.1002/aic.11665
  13. Methanol, ethanol, propanol, and butanol adsorption on H-ZSM-5 zeolite: an ONIOM study vol.25, pp.2, 2019, https://doi.org/10.1007/s00894-018-3894-2
  14. Performance of modified H-ZSM-5 zeolite for dehydration of methanol to dimethyl ether vol.91, pp.10, 2004, https://doi.org/10.1016/j.fuproc.2010.03.035
  15. Synthesis of dimethyl ether (DME) by catalytic distillation vol.66, pp.14, 2004, https://doi.org/10.1016/j.ces.2011.02.034
  16. Al-modified mesoporous silica for efficient conversion of methanol to dimethyl ether vol.3, pp.17, 2013, https://doi.org/10.1039/c3ra22734k
  17. A Physicochemical Evaluation of Modified HZSM-5 Catalyst Utilized for Production of Dimethyl Ether From Methanol vol.32, pp.8, 2004, https://doi.org/10.1080/10916466.2011.615366
  18. Catalytic Dehydration of Methanol to Dimethyl Ether Over Mesoporous γ-Al2O3 vol.37, pp.21, 2004, https://doi.org/10.1080/15567036.2012.699161
  19. Development of Heterogeneous Catalysts for Dehydration of Methanol to Dimethyl Ether: A Review vol.11, pp.1, 2019, https://doi.org/10.1134/s2070050419010045
  20. Methanol Dehydration to Dimethyl Ether on Zr-Loaded P-Containing Mesoporous Activated Carbon Catalysts vol.12, pp.13, 2004, https://doi.org/10.3390/ma12132204
  21. On the conversion of CO2 to value added products over composite PdZn and H-ZSM-5 catalysts: excess Zn over Pd, a compromise or a penalty? vol.10, pp.13, 2004, https://doi.org/10.1039/d0cy00440e
  22. Effect of surface acidity on the catalytic activity and deactivation of supported sulfonic acids during dehydration of methanol to DME vol.44, pp.39, 2020, https://doi.org/10.1039/d0nj00229a
  23. Combination of Cu/ZnO Methanol Synthesis Catalysts and ZSM-5 Zeolites to Produce Oxygenates from CO2 and H2 vol.64, pp.17, 2004, https://doi.org/10.1007/s11244-021-01447-8