DOI QR코드

DOI QR Code

Hydrogen Bonds in GlcNAc( β1,3)Gal( β)OMe in DMSO Studied by NMR Spectroscopy and Molecular Dynamics Simulations

  • Published : 2004.02.20

Abstract

Hydrogen bond is an important factor in the structures of carbohydrates. Because of great strength, short range, and strong angular dependence, hydrogen bonding is an important factor stabilizing the structure of carbohydrate. In this study, conformational properties and the hydrogen bonds in GlcNAc( ${\beta}$1,3)Gal(${\beta}$)OMe in DMSO are investigated through NMR spectroscopy and molecular dynamics simulation. Lowest energy structure in the adiabatic energy map was utilized as an initial structure for the molecular dynamics simulations in DMSO. NOEs, temperature coefficients, SIMPLE NMR data, and molecular dynamics simulations proved that there is a strong intramolecular hydrogen bond between O7' and HO3' in GlcNAc( ${\beta}$1,3)Gal(${\beta}$)OMe in DMSO. In aqueous solution, water molecule makes intermolecular hydrogen bonds with the disaccharides and there was no intramolecular hydrogen bonds in water. Since DMSO molecule is too big to be inserted deep into GlcNAc(${\beta}$1,3)Gal(${\beta}$)OMe, DMSO can not make strong intermolecular hydrogen bonding with carbohydrate and increases the ability of O7' in GlcNAc(${\beta}$1,3)Gal(${\beta}$)OMe to participate in intramolecular hydrogen bonding. Molecular dynamics simulation in conjunction with NMR experiments proves to be efficient way to investigate the intramolecular hydrogen bonding existed in carbohydrate.

Keywords

References

  1. Cheong, Y.; Shim, G.; Kang, D.; Kim, Y. J. Mol. Struct. 1999,475, 219. https://doi.org/10.1016/S0022-2860(98)00511-0
  2. Shim, G.; Lee, S.; Kim, Y. Bull. Korean Chem. Soc. 1997, 18, 415.
  3. Lee, K.; Lee, S.; Jhon, G.; Kim, Y. Bull. Korean Chem. Soc. 1998,19, 566.
  4. Kozar, T.; Tvaroska, I.; Carver, J. P. Glycoconj. J. 1998, 15(2),187. https://doi.org/10.1023/A:1006976408074
  5. Hoog, C.; Rotondo, A.; Johnston, B. D.; Pinto, B. M. Carbohydr.Res. 2002, 337, 2023. https://doi.org/10.1016/S0008-6215(02)00218-5
  6. Oh, J.; Kim, Y.; Won, Y. Bull. Korean Chem. Soc. 1995, 16, 1153.
  7. Tvaroska, I.; Taravel, F. R.; Utille, J. P.; Carver, J. P. Carbohydr.Res. 2002, 337, 353. https://doi.org/10.1016/S0008-6215(01)00315-9
  8. Kuttel, M.; Brady, J. W.; Naidoo, K. J. J. Comput. Chem. 2002, 3,1236.
  9. Naidoo, K. J.; Denysyk, D.; Brady, J. W. Protein Eng. 1997, 10,1249. https://doi.org/10.1093/protein/10.11.1249
  10. Brady, J. W.; Schmidt, R. K. J. Phys. Chem. 1993, 97, 958. https://doi.org/10.1021/j100106a024
  11. Stevensson, B.; Hoeoeg, C.; Ulfstedt-Jaekel, K.; Huang, Z.;Widmalm, G.; Mallnlak, A. J. Phys. Chem. B 2000, 104, 6065. https://doi.org/10.1021/jp0002805
  12. Jimenez, B. J. L.; Van Rooijen, J. J.; Erbel, P. J.; Leeflang, B. R.;Kamerling, J. P.; Vliegenthart, J. F. J. Biomol. NMR 2000, 16, 59. https://doi.org/10.1023/A:1008300916721
  13. Imberty, A. Curr. Opin. Struct. Biol. 1997, 7, 617. https://doi.org/10.1016/S0959-440X(97)80069-3
  14. French, A. D.; Dowd, M. K.; Reilty, P. J. J. Mol. Struct. 1997, 395,271.
  15. French, A. D.; Brady, J. W. Computer modeling of CarbohydrateMolecules; American Chemical Society: Washinton, DC, 1990.
  16. Christofides, J. C.; Davies, D. B.; Martin, J. A.; Rathbone, E. B. J.Am. Chem. Soc. 1986, 108, 5738. https://doi.org/10.1021/ja00279a013
  17. Reynhardt, E. C.; Reuben, J. J. Am. Chem. Soc. 1987, 109, 316. https://doi.org/10.1021/ja00236a004
  18. Adams, B.; Lerner, L. J. Am. Chem. Soc. 1992, 114, 4827. https://doi.org/10.1021/ja00038a055
  19. Weimer, T.; Bukowski, R.; Young, N. M. J. Biol. Chem. 2000,275, 37006. https://doi.org/10.1074/jbc.M005092200
  20. Bekiroglu, S.; Sandstrom, C.; Norberg, T.; Kenne, L. CarbohydrateResearch 2000, 328, 409. https://doi.org/10.1016/S0008-6215(00)00104-X
  21. Podolsky, D. K. J. Biol. Chem. 1985, 260, 8262.
  22. Bekiroglu, S.; Sandstron, C.; Norberg, T.; Kenne, L. CarbohydrateResearch 2000, 328, 409. https://doi.org/10.1016/S0008-6215(00)00104-X
  23. Molecular Simulation Inc., San Diego, CA.
  24. Bodenhausen, G.; Freeman, R.; Niedermeyer, R.; Turner, D. L. J.Magn. Reson. 1977, 26, 133.
  25. Bax, A.; Davis, D. G. J. Magn. Reson. 1985, 65, 355.
  26. Kessler, H.; Gehrke, M.; Griesinger, C. Angew. Chem. 1988, 100,507. https://doi.org/10.1002/ange.19881000407
  27. Bax, A.; Ikura, M.; Kay, L. E.; Torchia, D. A.; Tschudin, R. J.Magn. Reson. 1990, 86, 304.
  28. Macura, S.; Ernst, R. R. Mol. Phys. 1980, 41, 95. https://doi.org/10.1080/00268978000102601
  29. Bothner-By, A. A.; Stephens, R. L.; Lee, J. J. Am. Chem. Soc.1984, 106, 811. https://doi.org/10.1021/ja00315a069
  30. Brooks, S. R.; Bruccoleir, R. E.; Olafson, B. D.; States, D. J.;Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187. https://doi.org/10.1002/jcc.540040211
  31. Liu, H.; Muller, F.; Gunsteren, W. F. J. Am. Chem. Soc. 1995, 117,4363. https://doi.org/10.1021/ja00120a018
  32. Burgi, R.; Daura, X.; Mark, A.; Bellanda, M.; Mammi, S.;Peggion, E.; Van Gunsteren, W. J. Pept. Res. 2001, 57, 107. https://doi.org/10.1034/j.1399-3011.2001.00793.x
  33. Kurnikova, M. G.; Balabai, N.; Waldeck, D. H.; Coalson, R. D. J.Am. Chem. Soc. 1998, 120, 6121. https://doi.org/10.1021/ja972926l
  34. Kessler, H.; Matter, H.; Gemmecker, G.; Di, H. J.; Isernia, C.;Mronga, S. Intern. J. Pept. Prot. Res. 1994, 43, 47.

Cited by

  1. Self-Condensation of a Thiazole-Peptide Bearing a 21-Membered Loop into a Library of Giant Macrocycles with Multiple Orthogonal Loops vol.8, pp.6, 2006, https://doi.org/10.1021/ol052842e
  2. Molecular Dynamics Simulations on β Amyloid Peptide (25-35) in Aqueous Trifluoroethanol Solution vol.25, pp.6, 2004, https://doi.org/10.5012/bkcs.2004.25.6.838
  3. Evidences that β-Lactose Forms Hydrogen Bonds in DMSO vol.26, pp.12, 2004, https://doi.org/10.5012/bkcs.2005.26.12.2001
  4. Tertiary Structure of Ginsenoside Re Studied by NMR Spectroscopy vol.28, pp.12, 2004, https://doi.org/10.5012/bkcs.2007.28.12.2209