DOI QR코드

DOI QR Code

Direct Probing into the Electrochemical Interface Using a Novel Potential Probe: Au(111) Electrode/NaBF4 Solution Interface

  • Woo, Dae-Ha (Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology) ;
  • Yoo, Jung-Suk (Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology) ;
  • Park, Su-Moon (Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology) ;
  • Jeon, Il C. (Department of Chemistry, Jeonbuk National University) ;
  • Kang, Heon (School of Chemistry, Seoul National University)
  • Published : 2004.04.20

Abstract

Keywords

References

  1. Bard, A. J.; Faulkner, L. R. ElectrochemicalMethods, 2nd Ed.; John Wiley and Sons: New York, 2001; chapter13.
  2. Schmickler, W. Interfacial Electrochemistry; Oxford UniversityPress: Oxford, 1996; chapter 17.
  3. von Helmholtz, H. L. Wied. Ann. 1879, 7, 337.
  4. Gouy, G. J. Phys. 1910, 9, 457. https://doi.org/10.1088/0305-4608/9/3/009
  5. Chapman, D. L. Philos. Mag. 1913, 25, 475. https://doi.org/10.1080/14786440408634187
  6. Stern, O. Z. Elektrochem. 1924, 30, 508.
  7. Grahame, D. C. Chem. Rev. 1947, 41, 441. https://doi.org/10.1021/cr60130a002
  8. Kim, I. S.; Chon, S. W.; Kim, K. S.; Jeon, I. C. Bull. KoreanChem. Soc. 2003, 24, 1613. https://doi.org/10.5012/bkcs.2003.24.11.1613
  9. Chang, S.-G.; Lee, H. J.; Kang, H.; Park, S.-M. Bull. KoreanChem. Soc. 2001, 22, 481.
  10. Parsons, R. Chem. Rev. 1990, 90, 813. https://doi.org/10.1021/cr00103a008
  11. Korzeniewski, C.; Shirts, R. B.; Pons, S. J. Phys. Chem. 1985, 89,2297. https://doi.org/10.1021/j100257a030
  12. Pope, J. M.; Zheng, T.; Kimbrell, S.; Buttry, D. A. J. Am. Chem.Soc. 1992, 114, 10085. https://doi.org/10.1021/ja00051a065
  13. Zou, S.; Weaver, M. J. J. Phys. Chem. 1996, 100, 4237. https://doi.org/10.1021/jp9533178
  14. Oklejas, V.; Sjostrom, C.; Harris, J. M. J. Am. Chem. Soc. 2002,124, 2408. https://doi.org/10.1021/ja017656s
  15. Israelachvili, J. N.; Adams, G. E. J. Chem. Soc. Faraday Trans. I1978, 74, 975. https://doi.org/10.1039/f19787400975
  16. Pashley, R. M. J. Colloid Interface Sci. 1981, 83, 531. https://doi.org/10.1016/0021-9797(81)90348-9
  17. Israelachvili, J. N.; Pashley, R. M. Nature 1983, 306, 249. https://doi.org/10.1038/306249a0
  18. Toprakcioglu, C.; Klein, J.; Luckham, P. F. J. Chem. Soc. FaradayTrans. I 1987, 83, 1703. https://doi.org/10.1039/f19878301703
  19. Horn, R. G.; Evans, D. F.; Ninham, B. W. J. Phys. Chem. 1988,92, 3531. https://doi.org/10.1021/j100323a042
  20. Ducker, W. A.; Senden, T. J.; Pashley, R. M. Nature 1991, 353,239. https://doi.org/10.1038/353239a0
  21. Li, Y. Q.; Tao, N. J.; Pan, J.; Garcia, A. A.; Lindsay, S. M.Langmuir 1993, 9, 637. https://doi.org/10.1021/la00027a003
  22. Rainovic, Y. I.; Yoon, R. H. Langmuir 1994, 10, 1903. https://doi.org/10.1021/la00018a048
  23. Hillier, A. C.; Kim, S.; Bard, A. J. J. Phys. Chem. 1996, 100,18808. https://doi.org/10.1021/jp961629k
  24. Wang, J.; Feldberg, S. W.; Bard, A. J. J. Phys. Chem. B2002, 106, 10440. https://doi.org/10.1021/jp026350k
  25. Campbell, S. D.; Hillier, A. C. Langmuir 1999, 15, 891. https://doi.org/10.1021/la981137u
  26. Yoo, J. S.; Woo, D.-H.; Bang, K. S.; Park, S.-M.; Jeon, I. C.;Kang, H. Abstract for the 1st CIMS International Symposium:Nanosciences Related to Electrochemistry; Postech: Korea, 2001;p 4.
  27. Woo, D.-H.; Kang, H.; Park, S.-M. Anal. Chem. 2003, 75,6732. https://doi.org/10.1021/ac034584+
  28. Wiesendanger, R. Scanning Probe Microscopy and Spectroscopy;Cambridge University Press: Cambridge, 1994; pp 131-142.
  29. Hong, Y. A.; Hahn, J. R.; Kang, H. J. Chem. Phys. 2003, 119,10930. https://doi.org/10.1063/1.1621624
  30. Verwey, E. J. W.; Overbeek, J. Th. G. Theory of the Stability ofLyophoic Colloids; Elsevier: Amsterdam, 1948.
  31. Schmickler, W. Chem. Rev. 1996, 96, 3177. https://doi.org/10.1021/cr940408c
  32. Theory of the Stability of Lyophoic Colloids Verwey, E. J. W.; Overbeek, J. Th. G.
  33. Chem. Rev. v.96 Schmickler, W. https://doi.org/10.1021/cr940408c

Cited by

  1. Direct Probing of Electrical Double Layers by Scanning Electrochemical Potential Microscopy vol.111, pp.12, 2007, https://doi.org/10.1021/jp0661084
  2. Real-Space Investigation of Electrical Double Layers. Potential Gradient Measurement with a Nanometer Potential Probe vol.115, pp.35, 2011, https://doi.org/10.1021/jp202193t
  3. STM, SECPM, AFM and Electrochemistry on Single Crystalline Surfaces vol.3, pp.8, 2010, https://doi.org/10.3390/ma3084196
  4. High-Resolution Imaging of the Initial Stages of Oxidation of Cu(111) with Scanning Electrochemical Potential Microscopy vol.2, pp.1, 2014, https://doi.org/10.1002/celc.201402283
  5. In-situ-Abbildung einzelner Enzym-Moleküle unter elektrochemischen Bedingungen vol.121, pp.30, 2009, https://doi.org/10.1002/ange.200806144
  6. Imaging Single Enzyme Molecules under In Situ Conditions vol.48, pp.30, 2009, https://doi.org/10.1002/anie.200806144
  7. Preparation of Atomically Flat Si(111)-H Surfaces in Aqueous Ammonium Fluoride Solutions Investigated by Using Electrochemical, In Situ EC-STM and ATR-FTIR Spectroscopic Methods vol.25, pp.12, 2004, https://doi.org/10.5012/bkcs.2004.25.12.1822
  8. Controllable nanogap fabrication on microchip by chronopotentiometry vol.50, pp.15, 2005, https://doi.org/10.1016/j.electacta.2004.12.041
  9. Electrode Kinetics and Complex Formation of [Zn-Antibiotics-Cephalothin] System vis a vis Kinetics of Electrode Reactions vol.54, pp.3, 2007, https://doi.org/10.1002/jccs.200700096
  10. A nanometer potential probe for the measurement of electrochemical potential of solution vol.52, pp.14, 2004, https://doi.org/10.1016/j.electacta.2006.12.075
  11. Size-controlled fabrication of nanometer-sized gold electrodes with polystyrene coating vol.11, pp.3, 2004, https://doi.org/10.1016/j.elecom.2009.01.003
  12. Numerical simulation of probing the electric double layer by scanning electrochemical potential microscopy vol.55, pp.18, 2004, https://doi.org/10.1016/j.electacta.2010.04.042
  13. Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces vol.3, pp.1, 2018, https://doi.org/10.1038/s41560-017-0048-1