DOI QR코드

DOI QR Code

Synthesis of Thiol-Functionalized Ionic Liquids and Formation of Self-Assembled Monolayer on Gold Surfaces: Effects of Alkyl Group and Anion on the Surface Wettability

  • Lee, Bang-Sook (Life Sciences Division, Korea Institute of Science and Technology) ;
  • Lee, Sang-Gi (Life Sciences Division, Korea Institute of Science and Technology)
  • Published : 2004.10.20

Abstract

Twenty four thiol-functionalized ionic liquids based on imidazolium cation, 1-(12-mercaptododecyl)-3-alkylimidazolium salts, have been synthesized, and utilized to investigate the effects of alkyl-chain length and anion on the wettability of Au surfaces on the basis of self-assembled monolayers presenting [(CnSAMIM)X], where n = 1-6, X = Br, $BF_4$, $PF_4$ and $NTf_2$. Water wettabilities of the surfaces were measured as a water contact angle by contact angle goniometry. It was found that water wettability of the Au surfaces coated with imidazolium ions was largely dependent not only on counter anions but also on the length of alkyl chains. In the case of SAMs of N-alkylimidazolium ions having short length of N-alkyl chain (C1-$C_4$), anions played great role in determining water wettability of the surfaces.

Keywords

References

  1. Ionic Liquids in Synthesis; Wasserscheid, P.; Welton, T., Eds.;Wiley-VCH Verlag: Weinheim, 2003.
  2. Ionic Liquids: Industrial Applications for Green Chemistry;Roger, R. D.; Seddon, K. R., Eds.; ACS Symposium Series 818,American Chemical Society, Washington DC, 2002.
  3. Bonhote, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.;Grätzel, M. Inorg. Chem. 1996, 35, 1168. https://doi.org/10.1021/ic951325x
  4. Swatloski, R. P.; Visser, A. E.; Matthew Reichert, W.; Broker, G.A.; Farina, L. M.; Holbrey, J. D.; Rogers, R. D. Chem. Commun.2001, 2070.
  5. Swatloski, R. P.; Visser, A. E.; Matthew Reichert, W.; Broker, G.A.; Farina, L. M.; Holbrey, J. D.; Rogers, R. D. Green Chem.2002, 4, 81. https://doi.org/10.1039/b108905f
  6. Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102,3667. https://doi.org/10.1021/cr010338r
  7. Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D. J. Am.Chem. Soc. 2002, 124, 4974. https://doi.org/10.1021/ja025790m
  8. Kimizuka, N.; Nakashima, T. Langmuir 2001, 17, 6759. https://doi.org/10.1021/la015523e
  9. Ho, H. A.; Leclerc, M. J. Am. Chem. Soc. 2003, 125, 4412. https://doi.org/10.1021/ja028765p
  10. Dupont, J.; Fonseca, G. S.; Umpierre, A. P.; Fichtner, P. F. P.;Teixeira, S. R. J. Am. Chem. Soc. 2002, 124, 4228. https://doi.org/10.1021/ja025818u
  11. Zhu, Y.-J.; Wang, W.-W.; Qi, R.-J.; Hu, X.-L. Angew. Chem. Int.Ed. 2004, 43, 1410. https://doi.org/10.1002/anie.200353101
  12. Huang, J.; Jiang, T.; Gao, H.; Han, B.; Liu, Z.; Wu, W.; Chang, Y.;Zhao, G. Angew. Chem. Int. Ed. 2004, 43, 1397. https://doi.org/10.1002/anie.200352682
  13. Tiyapiboonchaiya, C.; Pringle, J. M.; MacFarlane, D. R.; Forsyth,M.; Sun, J. Macromol. Chem. Phys. 2003, 204, 2147. https://doi.org/10.1002/macp.200350073
  14. Tiyapiboonchaiya, C.; Pringle, J. M.; Sun, J.; Byrne, N.; Howlett, P.C.; MacFarlane, D. R.; Forsyth, M. Nature Materials 2004, 3, 29. https://doi.org/10.1038/nmat1044
  15. Stathatos, E.; Lianos, P.; Zakeeruddi, S. M.; Liska, P.; Grätzel, M.Chem. Mater. 2003, 15, 1825. https://doi.org/10.1021/cm0213568
  16. Ulman, A. Chem. Rev. 1996, 96, 1533. https://doi.org/10.1021/cr9502357
  17. Kingshott, P.; Griesser, H. J. Curr. Opin. Solid State Mater. Sci.1999, 4, 403. https://doi.org/10.1016/S1359-0286(99)00018-2
  18. Mrksich M. Curr. Opin. Chem. Biol. 2002, 6, 794. https://doi.org/10.1016/S1367-5931(02)00362-9
  19. Whitesides, G. M. Angew. Chem. Int. Ed. 1989, 28, 506. https://doi.org/10.1002/anie.198905061
  20. Whitesides, G. M.; Laibinis, P. E. Langmuir 1990, 6, 87. https://doi.org/10.1021/la00091a013
  21. Chaudhury, M. K.; Whitesides, G. M. Science 1992, 256, 1539. https://doi.org/10.1126/science.256.5063.1539
  22. Colorado, R., Jr.; Lee, T. R. Langmuir 2003, 19, 3288. https://doi.org/10.1021/la0263763
  23. Abbott, S.; Ralston, J.; Reynolds, G.; Hayes, R. Langmuir 1999,15, 8923. https://doi.org/10.1021/la990558o
  24. Ichimura, K.; Oh, S.-K.; Nakagawa, M. Science 2000, 288, 1624. https://doi.org/10.1126/science.288.5471.1624
  25. Lahann, J.; Mitragotri, S.; Tran, T.-N.; Kaido, H.; Sundaram, J.;Choi, I. S.; Hoffer, S.; Somorjai, G. A.; Langer, R. Science 2003,299, 371. https://doi.org/10.1126/science.1078933
  26. Abbott, N. L.; Kumar, A.; Whitesides, G. M. Chem. Mater. 1994,6, 596. https://doi.org/10.1021/cm00041a007
  27. Itoh, M.; Nishihara, H.; Aramaki, K. J. Electrochem. Soc. 1994,141, 2018. https://doi.org/10.1149/1.2055053
  28. Sinapi, F.; Forget, L.; Delhalle, J.; Mekhalif, Z. Appl. Surf. Sci.2003, 212, 464. https://doi.org/10.1016/S0169-4332(03)00142-9
  29. Lopez, G. P.; Albers, M. W.; Schreiber, S. L.; Carroll, R.; Peralta,E.; Whitesides, G. M. 1993, 115, 5877.
  30. Mrksich, M.; Whitesides, G. M. Annu. Rev. Biophys. Biomol.Struct. 1996, 25, 55. https://doi.org/10.1146/annurev.bb.25.060196.000415
  31. Mrksich, M. Cell. Mol. Life Sci. 1998, 54, 653. https://doi.org/10.1007/s000180050193
  32. Kingshott, P.; Griesser, H. J. Curr. Opin. Solid State Mater. Sci.1999, 4, 403. https://doi.org/10.1016/S1359-0286(99)00018-2
  33. Mrksich, M. Curr. Opin. Chem. Biol. 2002, 6, 794. https://doi.org/10.1016/S1367-5931(02)00362-9
  34. Schaeferling, M.; Schiller, S.; Paul, H.; Kruschina, M.;Pavlickova, P.; Meerkamp, M.; Giammasi, C.; Kambhampati, D.Electrophoresis 2002, 23, 3097. https://doi.org/10.1002/1522-2683(200209)23:18<3097::AID-ELPS3097>3.0.CO;2-G
  35. Minko, S.; Muller, M.; Motornov, M.; Nitschke, M.; Grundke, K.;Stamm, M. J. Am. Chem. Soc. 2003, 125, 3896. https://doi.org/10.1021/ja0279693
  36. Julthongpiput, D.; Lin, Y.-H.; Teng, J.; Zubarev, E. R.; Tsukruk, V.V. Langmuir 2003, 19, 7832. https://doi.org/10.1021/la035007j
  37. Julthongpiput, D.; Lin, Y.-H.; Teng, J.; Zubarev, E. R.; Tsukruk, V.V. J. Am. Chem. Soc. 2003, 125, 15912. https://doi.org/10.1021/ja038051u
  38. Chatelier, R. C.; Drummond, C. J.; Chan, D. Y. C.; Vasic, Z. R.;Gengenbach, T. R.; Griesser, H. J. Langmuir 1995, 11, 4122. https://doi.org/10.1021/la00010a078
  39. Ista, L. K.; Perez-Luna, V. H.; Lopez, G. P. Appl. Environ.Microbiol. 1999, 65, 1603.
  40. Nath, N.; Chilkoti, A. Adv. Mater. 2002, 14, 1243. https://doi.org/10.1002/1521-4095(20020903)14:17<1243::AID-ADMA1243>3.0.CO;2-M
  41. de Crevoisier, G.; Fabre, P.; Corpart, J.-M.; Leibler, L. Science1999, 285, 1246. https://doi.org/10.1126/science.285.5431.1246
  42. Ohnishi, S.; Ishida, T.; Yaminsky, V. V.; Christenson, H. K.Langmuir 2000, 16, 2722. https://doi.org/10.1021/la991167c
  43. Gallardo, B. S.; Gupta, V. K.; Eagerton, F. D.; Jong, L. I.; Craig, V.S.; Shah, R. R.; Abbott, N. L. Science 1999, 283, 57. https://doi.org/10.1126/science.283.5398.57
  44. Lee, B. S.; Chi, Y. S.; Lee, J. K.; Choi, I. S.; Song, C. E.;Namgoong, S. K.; Lee, S.-g. J. Am. Chem. Soc. 2004, 126, 480. https://doi.org/10.1021/ja038405h
  45. Chi, Y. S.; Lee, J. K.; Lee, S.-g.; Choi, I. S. Langmuir 2004, 20,3024. https://doi.org/10.1021/la036340q
  46. Itoh, H.; Naka, K.; Chujo, Y. J. Am. Chem. Soc. 2004, 126, 3026. https://doi.org/10.1021/ja039895g
  47. Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D. J. Am.Chem. Soc. 1987, 109, 3559. https://doi.org/10.1021/ja00246a011

Cited by

  1. Soft hybrids of Eu3+ beta-diketonates and MS (M = Zn, Cd) nanoparticles using mercapto-ionic liquid linkage for white luminescence integration vol.37, pp.9, 2013, https://doi.org/10.1039/c3nj00547j
  2. Imidazolium-Based Ionic Liquid Surfaces for Biosensing vol.85, pp.12, 2013, https://doi.org/10.1021/ac400386z
  3. ) Beta-Diketonates and Polymer Resin Through Ionic Liquid Bridge vol.90, pp.6, 2014, https://doi.org/10.1111/php.12307
  4. Immobilization of a Cobalt(III) Complex Possessing Selective Nitric Oxide Capturing Ability onto an Ionic Liquid-modified Au Electrode: Reactivity of the Electrode toward Nitric Oxide vol.45, pp.4, 2016, https://doi.org/10.1246/cl.151199
  5. Hierarchically structured polymeric ionic liquids and polyvinylpyrrolidone mat-fibers fabricated by electrospinning vol.5, pp.20, 2017, https://doi.org/10.1039/C7TA02447A
  6. Synthesis of Thiol-Functionalized Ionic Liquids and Formation of Self-Assembled Monolayer on Gold Surfaces: Effects of Alkyl Group and Anion on the Surface Wettability. vol.36, pp.11, 2005, https://doi.org/10.1002/chin.200511141
  7. Preparation of Inorganic Materials Using Ionic Liquids vol.22, pp.2, 2010, https://doi.org/10.1002/adma.200900603
  8. Hybridization by an Electrical Force and Electrochemical Genome Detection Using an Indicator-free DNA on a Microelectrode-array DNA Chip vol.26, pp.3, 2004, https://doi.org/10.5012/bkcs.2005.26.3.379
  9. Functionalized imidazolium salts for task-specific ionic liquids and their applications vol.2006, pp.10, 2006, https://doi.org/10.1039/b514140k
  10. Physico-chemical processes in imidazolium ionic liquids vol.8, pp.21, 2004, https://doi.org/10.1039/b602046a
  11. Palladium Catalysts Supported onto the Ionic Liquid-Functionalized Carbon Nanotubes for Carbon-Carbon Coupling vol.28, pp.11, 2004, https://doi.org/10.5012/bkcs.2007.28.11.1925
  12. Imidazole- and imidazolium-containing polymers for biology and material science applications vol.51, pp.12, 2004, https://doi.org/10.1016/j.polymer.2010.02.006
  13. Microcontact Printing of Thiol-Functionalized Ionic Liquid Microarrays for “Membrane-less” and “Spill-less” Gas Sensors vol.8, pp.45, 2004, https://doi.org/10.1021/acsami.6b08876
  14. Poly(ionic liquid)-Coated Meshes with Opposite Wettability for Continuous Oil/Water Separation vol.59, pp.14, 2004, https://doi.org/10.1021/acs.iecr.0c00554
  15. An investigation on FR4 as a based material for Ti/Au and Cu/Au evaporated fabrication for DNA biosensor application vol.1535, pp.None, 2020, https://doi.org/10.1088/1742-6596/1535/1/012037