In vitro Biological Activity Assay of Ethanol Extract of Radish

무 에탄올 추출물의 in vitro 생리활성 분석

  • Jung, Min-Suk (Department of Food and Biotechnology and Department of Innovative Industrial Technology, Hoseo University) ;
  • Lee, Gun-Soon (Department of Rural Living Science, Korea National Agricultural College) ;
  • Chae, Hee-Jeong (Department of Food and Biotechnology and Department of Innovative Industrial Technology, Hoseo University)
  • 정민숙 (호서대학교 벤처전문대학원 및 식품생물공학과) ;
  • 이건순 (한국농업전문대학 교양공통학과) ;
  • 채희정 (호서대학교 벤처전문대학원 및 식품생물공학과)
  • Published : 2004.03.31

Abstract

In vitro biological activities of ethanol extract of radish including whitening, hangover removal, antimicrobial and antioxidant activities were analyzed. For whitening activity assay, tyrosinase inhibition rate was measured as $IC_{50}$ (50% inhibitory concentration). The $IC_{50}$ values of radish trunk and root extracts were estimated as 0,9 mg/ml and 2.1 mg/ml, respectively. Radish trunk extract showed 2.5-fold tyrosinase inhibition activity of radish root extract, however, there was no significant difference according to radish species. By alcohol dehydrogenase (ADH) activity assay as a hangover removal activity assay, radish trunk extract (2.5 mg/ml) and root extracts (8 mg/ml) showed ]50% activation of ADH. TBA values of radish trunk and root extracts (1% of each) were 43-61 % level of ${\alpha}-tochoperol$ (2.2%). From the analysis of in vitro biological activities of radish, it was suggested that radish could be used in functional food or cosmetics containing hangover removal, whitening and antioxidant activities.

무 에탄올 추출물의 미백기능, 숙취해소, 항균활성 및 항산화능을 분석하였다. Tyrosinase inhibition assay법을 이용하여 미백활법을 측정한 결과 무 줄기와 무 뿌리 추출물의 $IC_{50}$(50% inhibitory concentration)은 각각 0.9 mg/ml와 2.1 mg/ml를 나타냈다. 무뿌리 추출물보다 무줄기 추출물이 2.5배 정도 높은 tyrosinase의 저해율을 보였지만, 무의 품종별로는 별다른 활성 차이를 보이지 않았다. 숙취해소 활성의 분석법으로는 alcohol dehydrogenase activity assay방법을 이용하여 측정한 결과 ethanol을 분해시키는데 필요한 효소인 alcohol dehydrogenase를 150% 활성화시키는 무줄기와 무뿌리 추출물의 농도가 각각 2.5 mg/ml와 8 mg/ml로 나타났다. 항산화력의 직접적인 지표로 대표적으로 분석되는 항목인 TBARS법에 의한 TBA 값을 천연 항산화제와 비교한 결과, 무줄기 추출물과 무뿌리 추출물(1%)은 ${\alpha}-tochoperol$(2.2%)의 43-61% 수준의 항산화 활성을 나타냈다. 이와 같은 생리활성 분석을 통하여 무를 이용한 숙취해소 및 항암 기능식품 개발, 미백 기능 소재로의 개발 가능성을 확인할 수 있었다.

Keywords

References

  1. Jung, D. H. (1998) In Biological Efficacy of Food, Seonjin Munwhasa, Seoul, pp. 72-74
  2. Yim, H. B., Lee, G. and Chae, H. J. (2004) Cytotoxicity of ethanol extract of Raphanuse sativus on human lung cancer cell lines. J. Korean Soc. Food Sci. Nutr. 33, 287-290
  3. Lee, S. H., Park, J. S., Kim, S. Y., Kim, J. J. and Chung, S. R. (1998) Inhibitory components on tyrosinase activity from the bark of Paeonia moutan. Yakhak Hoeji 42, 353-358
  4. An, S. W., Kim, Y. G., Kim, M. H., Lee, B. I., Lee, S. H., Kwon, H. I., Hwang, B. and Lee, H. Y. (1999) Comparison of hepatic detoxification activity and reducing semm alcohol concentration of Hovenia dulsis THUNB and Alnus japonica steud. Korean J: Med. Corp Sci. 7, 263-268
  5. Halliwell, G. H. and Gutteridge, J. M. C. (1990) Role of free radical and catalytic metal ionsin human disease: An overview. Methods Enz.ymol. 186, 1-85 https://doi.org/10.1016/0076-6879(90)86093-B
  6. Moon, J. H. and Park, K. H. (1995) Punctional components and physiological activity of tea. J. Korean Tea Soc. 1, 175-191
  7. Ramarathnam, N., Osawa, T., Ochi, H. and Kawakishi, S. (1995) The conthbution of plant food antioxidants to human health. Trends Food Sci. 6, 75-82 https://doi.org/10.1016/S0924-2244(00)88967-0
  8. Brancn, A. L. (1975) Toxicological and biochemisty of butylated hydroxytoluene, butylated hydroxyanisole. J. Am. Oil Chem. Soc. 52, 59-63 https://doi.org/10.1007/BF02901825
  9. Farag, R. S., Badei, A. Z. M. A., Hewedi, F. M. and El-Baroty, G. S. A. (1989) Antioxidant activity of some spice essential oils on linoleic acid oxidant in aquesous media. J. Am. Oil Chem. Soc. 66, 792-798 https://doi.org/10.1007/BF02653670
  10. Hering, V. J. and Jimenez, M. (1987) Mammalian tyrosinase the critical regulatory control point in melanocyte pigment. Int. J. Biochem. 19, 1141-1149 https://doi.org/10.1016/0020-711X(87)90095-4
  11. Lebsack, M. E., Petersen, D. R. and Collus, A. C. (1976) Preferential inhibition of the low Km aldehyde dehydrogenase activity by pargyline. Biochem. Phannac. 26, 1151-1154
  12. Rhee, K. S., Ziprin, Y. A. and Rhee, K. C. (1981) Antioxidant activity of methanolic extracts of various oilseed protein ingredient. J. Food. Sci. 46, 75-81 https://doi.org/10.1111/j.1365-2621.1981.tb14534.x
  13. Buege, J. A. and Aust, S. D. (1978) Microsomol lipid peroxidation. Methods Enzymol 52, 302-310
  14. Kim, J. K., Cha, W. S., Park, J. H., Oh, S. L., Cho, Y. J., Chun, S. S. and Choi, C. (1997) Inhibitory effect against tyrosinase of condensed tannins from Korean green tea. Korean J. Food Sci. Technol. 29, 173-177
  15. Lee, S. H., Kim, S. Y, Kim, J. J., Jang, T. S. and Chung, S. R. (1999) The isolation of the inhibitory constituents on melanin polymer formation from the leaves of Cercis chinensis. Korean J. Pharmacogn. 30, 397-403
  16. Seo, J. S. (1998) Alcohol metabolism and nutritional effects. Food Ind. Nutr. 4, 13-19
  17. Kim, S. K., Lee, Y. C,, Suh, K. G. and Choi, H. S. (2001) Acetaldehyde dehydrogenase acdvator from persimmon and its processed foods. J. Korean Soc. Food Sci. Nutr. 30, 954-958
  18. Tsukamoto, S., Muto, T., Nagoya, T, Shimamura, M., Saito, M. and Tainaka, H. (1989) Determination of ethanol, acetaldehyde and acetate in blood and urine during alcohol oxidation in man. Atcohol Alcoholism 30, 101-108