Screening of Physiological Functionality of Germinated Giant Embryonic Rices

발아 거대배아미의 생리활성 효과 검정

  • Lee, Yun-Ri (Department of Food Science and Nutrition, Kyungpook National University) ;
  • Kang, Mi-Young (Department of Food Science and Nutrition, Kyungpook National University) ;
  • Koh, Hee-Jong (Department of Agronomy, Seoul National University) ;
  • Chin, Joong-Hyoun (Department of Agronomy, Seoul National University,Shinji Corp.) ;
  • Nam, Seok-Hyun (Department of Biological Science, Ajou University)
  • Published : 2004.06.30

Abstract

Changes in physiological functionality of giant embryonic rice by germination process were investigated using 70% ethanolic extract of the rices. Physiological functionality was evaluated by determining the reducing power, phenolic compound content, GABA content, and antimutagenicity. The results showed that the order of reducing power of the non-germinated rices was Nampung giant embryonic rice>normal rice> Whachung giant embryonic rice, however, the activity was high as the order of Whachung giant embryonic rice> Nampung giant embryonic rice> normal rice by germination process. About 3-fold activity increase was observed for Whachung giant embryonic rice, while, the activity of Nampung giant embryonic rice and normal rice decreased by the same treatment. The phenolic compound content of three rice cultivars were found to be almost same levels. Germination of rice increased the content of phenolic compounds by 2.6-fo1d without any considerable changes for both Nampung giant embryonic rice and normal rice. The GABA contents was highest in Whachung giant embryonic rice, followed by Nampung giant embryonic rice, normal rice in either germination or non-germination condition. The germination increased the GABA contents by more than 2.4-fold for all rice cultivars tested. We also found an increase in the antimutagenic activity by germination process for all cultivars, where the activity was the greatest for Whachung cultivar.

발아에 의한 거대배아미의 생리활성 변화를 70% 에탄올 추출물을 이용하여 검토하였다. 생리활성의 변화는 시료의 환원력과 페놀 화합물의 함량, 항변이원설, 그리고 정상세포에 대한 세포독성을 측정함으로써 평가하였다. 연구 결과, 무발아 조건에서 환원력은 남풍거대배아미 >일반미 >화청거대배아미의 순서였으나, 발아처리하면 화청거대배아미 >남풍거대배아미 >일반미의 순서로 활성이 변화하였다. 남풍거대배아미와 일반미는 발아처리로 환원력이 감소하는데 반하여, 화청거대배아미는 약 3배 증가하였다. 무발아 조건에서 3품종의 쌀은 거의 비슷한 수준의 페놀 화합물 함량을 보였다. 반면, 발아처리는 남풍거대배아미와 일반미의 페놀 화합물 함량에 크게 영향을 주지 않은 반면, 남풍거대배아미의 페놀 함량을 2.6배 증가시켰다. $GABA({\gamma}-aminobutyric acid)$ 함량을 측정한 결과, 발아처리에 관계없이 함량은 화청거대배아미 >남풍거대배아미 >일반미의 순서였고 발아처리는 모든 품종에서 2.4배 이상의 함량증가를 일으켰다. 추출물의 항변이원성을 조사한 결과, 발아처리에 의하여 모든 품종에서 항변이원성이 2.7배 이상 증가하였지만, 발아 화청거대배아미의 항변이원성이 가장 높게 나타났다.

Keywords

References

  1. Cho, B.. M., Yoon, S. K and Kim, W. J. (1985) Changes in amino acid and fatty acids composition during germination of rapeseed. Korean J. Food Sci. Technol. 17, 371-376
  2. Hsu, D., Leung, H. K, Finney, P. L. and Morad, M. M. (1980) Effect of germination on nutrative value and baking properties of dry peas, lentils and faba beans. J. Food Sci. 45, 87-91 https://doi.org/10.1111/j.1365-2621.1980.tb03877.x
  3. Choi, K S. and Kim, Z. U. (1985) Changes in lipid components during germination of mungbean. Korean J. Food Sci. Technol. 17, 271-275
  4. Colmenarse De Ruiz, A. S. and Bressani, R. (1990) Effect of germinati~n on the chemical composition and nutrative valus of amaranth grain. Cereal Chem. 67, 519-523
  5. Lee, M. H., Son, H .S., Choi, O. K, Oh, S. K and Kwon, T. B. (1994) Changes in physico-chemical properties and mineral· contents during buckwheat germination. Korean J. Food Nutri. 7, 267-273
  6. Kim,I. S.., Kwon, T. B. and Oh, S. K (1985) Study on the chemical change of general composition fatty acids and minerals of rape seed during germination. Korean J. Food Sci. Technol. 17, 371-376
  7. Ikeda, K. Arioka, K. Fujii, S., Kusano, T. and Oku, M. (1984) Effect on buckwheat protein quality of seed germination and changes in trypsin inhibitor content. Cereal Chem. 61, 236-240
  8. Kim, W. J., Kim, N. M. and Sung, H. S. (1984) Effect of germinationon phytic acid and soluble minerals in soymilk. Korean J. Food Sci. Technol. 16, 358-362
  9. Ahn, B. and Yang, C. B. (1985) Effects of soaking, germination, incubation and·autoclaving on phytic acid in seed. Korean J. Food Sci. Technol. 17, 516-521
  10. Lee, M. H. and Shin, J. C. (1996) In Proc. Korean Society of Rice Research Conference: New techniques for the cultivation of quality rice. pp. 239-263
  11. Nakagawa, K and Onota, A. (1996) Accumulation of \gamma-aminogutyric acid (GABA) in the rice germ. Food Processing 31,43-46
  12. Juliano, B. O. (1985) Rice-Chemistry and Technology, AACC, New York
  13. Sato, H. and Omura, T (1981) New endosperm mutations induced by chemical mutagens in rice, Oriza sativa, L.Jpn. J. Breed. 31, 316-326 https://doi.org/10.1270/jsbbs1951.31.316
  14. Kim, K H. , Park, S. Z., Koh, H. J. and Heu, M. H. (1992) In Proceed of SABRAO Intern. Syrnp. on the Irnpact of Biological Research on Agricultural Productivity: New mutants for endosperm and embryo characters in rice: Two dull endosperm and giant embryo. pp. 125-131
  15. Oyaizu, M. (1986) Studies on production of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosarnine. Jpn. J. Nutr. 44, 307-315 https://doi.org/10.5264/eiyogakuzashi.44.307
  16. Quilladet, P., Huisaman, O. D. and Hofnung, M. (1982) SOS chromotest, a direct assay of induction of a SOS function in Escherichia coli K-12 to measure genotoxicity. Proc. Natl. Acad. Sci. USA 79, 5971-5980 https://doi.org/10.1073/pnas.79.19.5971
  17. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assay.Jl. Immunol. Methods 65, 55-63 https://doi.org/10.1016/0022-1759(83)90303-4
  18. Enz, R. (2001) GABA (C) receptors: a molecular view. BioI. Chem. 59, 1531-1535
  19. Blanchard, D. C., Griebel, G. and Blanchard, R. J. (2003) The mouse defense test battery: pharmacological and behavioral assay for anxiety and panic. Eur. J. Pharmacal. 463, 97-116 https://doi.org/10.1016/S0014-2999(03)01276-7
  20. Ames, B. N. (1983) Dietary carcinogenesis and anticarcinogenesis: oxygen radicals and degenerative diseases. Science 221, 1256-1264 https://doi.org/10.1126/science.6351251
  21. Compagni, A and Christofri, G. (2000) Recent advances in research on multistage tumorigenesis. Brit. J. Cancer 83, 1-5 https://doi.org/10.1054/bjoc.2000.1309
  22. Kada, T. and Shimoi, K (1983) Desmutagens and bioantimutagens: Their modes of a.ction. Bioassays 7, 113-116