Effect of Chitin Derivatives on Non-steamed Alcohol Fermentation of Tapioca

Chitin 유도체가 타피오카의 무증자 알콜발효에 미치는 영향

  • Jeong, Yong-Jin (Department of Food Science and Technology, Keimyung University) ;
  • No, Hong-Kyoon (Faculty of Food Industrial Technology, Catholic University of Daegu)
  • 정용진 (계명대학교 자연과학대학 식품가공학과) ;
  • 노홍균 (대구가톨릭대학교 식품산업학부)
  • Published : 2004.02.28

Abstract

Chitin and its derivatives (chitosan and glucosamine) were studied for their effects on ethanol production using YPD (yeast extract 10%, peptone 20%, glucose 20%, agar 20%) medium. All chitin derivatives, particularly chitin, increased ethanol production compared with control. In non-steamed alcohol fermentation of tapioca, addition of 0.9% chitin yielded higher ethanol production (13.6%) with lower acetaldehyde (21.91 ppm) and methanol (65.49 ppm) contents than those (12.7%, 35.05 ppm, 84.31 ppm, respectively) of control after fermentation for 120 hr at $30^{\circ}C$. Results indicate that chitin can be used to increase ethanol production in non-steamed alcohol fermentation of tapioca.

Chitin 및 그 유도체(chitosan, glucosamine)의 YPD 배지에서 알콜발효력을 비교한 결과, 대조구에 비하여 모든 첨가구간에서 알콜수율이 높게 나타나는 경향이었으며, 특히 chitin 첨가구간에서 가장 높았다. 타피오카의 알콜발효에 미치는 영향은 chitin 함량 0.9%, 발효 120시간째에 알콜함량 13.6%로 가장 높게 증가되었다 Chitin 첨가는 알콜수율을 증가시키며 acetaldehyde와 methanol 함량 감소 효과가 있는 것으로 나타나, 앞으로 타피오카의 무증자 알콜발효에 chitin의 이용이 상당히 기대된다.

Keywords

References

  1. Ha YD. Effect of addition soy flour on tapioca non-steamed fermentation. J. Korean Soc. Food Sci. Nutr. 32: 388-392 (2003) https://doi.org/10.3746/jkfn.2003.32.3.388
  2. Kim KH, Park SH. Liquefaction and saccharification of tapioca starch for fuel ethanol production. Korean J. Biotechnol. Bioeng. 10: 304-316 (1995)
  3. Jeong YJ, Baek CH, Woo KJ, Woo SM, Lee OS, Ha YD. Alcohol fermentation characteristics of tapioca using raw starch enzyme. J. Korean Soc. Food Sci. Nutr. 31: 405-410 (2002) https://doi.org/10.3746/jkfn.2002.31.3.405
  4. Han MS, Chung DH. Saccharification and ethanol fermentation from uncooked starch using Aspergillus niger koji. Korean J. Food Sci. Technol. 17: 258-264 (1985)
  5. Park KH, Oh BH, Hong SS, Lee KH. Production of alcohol from starch without cooking. J. Korean Agric. Chem. Soc. 27: 198-203 (1984)
  6. Park IS, Nam I, Kho SO, Kim GN, Suh KS. Production and characterization of raw starch hydrolyzing enzyme from bacteria. Korean J. Appl. Microbiol. Biotechnol. 18: 244-250 (1990)
  7. Shin JS, Jeong YJ. Changes in the components of acetic acid fermentation of brown rice using raw starch digesting enzyme. J. Korean Soc. Food Sci. Nutr. 32: 381-387 (2003) https://doi.org/10.3746/jkfn.2003.32.3.381
  8. Shin JS, Lee OS, Kim KE, Jeong YJ. Monitoring of alcohol fermentation condition of brown rice using raw starch digesting enzyme. J. Korean Soc. Food Sci. Nutr. 32: 375-380 (2003) https://doi.org/10.3746/jkfn.2003.32.3.375
  9. Damiano D, Wang SS. Improvements in ethanol concentration and fermentor ethanol productivity in yeast fermentations using whole soy flour in batch, and continuous recycle systems. Biotechnol. Lett. 7: 135-140 (1985) https://doi.org/10.1007/BF01026685
  10. Ju NH, Damiano D, Shin CS, Kim NK, Wang SS. Continuous ethanol fermentation of Zymomonas mobilis using soy flour as a protective agent. Biotechnol. Lett. 5: 837-842 (1983) https://doi.org/10.1007/BF01386658
  11. Cristina AV, Isabel SC, Julio MN. Nutrient-enhanced production of remarkably high concentrations of ethanol by Saccharomyces bayanus through soy flour supplementation. Appl. Environ. Microbiol. 50: 1333-1335 (1985)
  12. No HK. Preparation of chitin and chitosan and their applications to food industry. J. Chitin Chitosan 3: 19-38 (1998)
  13. Byun HG, Kang OJ, Kim SK. Physicochemical properties and synthesis of chitin/chitosan derivatives. J. Korean Agric. Chem. Soc. 35: 265-271 (1992)
  14. Patil SG, Patil BG. Chitin supplement speeds up the ethanol production in cane molasses fermentation. Enzyme Microbiol. Technol. 11: 38-43 (1989) https://doi.org/10.1016/0141-0229(89)90111-7
  15. Thierry C, Marie NP. Improvement of alcoholic fermentation on cane and beet molasses by supplementation. J. Ferment. Bioeng. 71: 24-27 (1991) https://doi.org/10.1016/0922-338X(91)90298-U
  16. Koide SS. Chitin-chitosan: Properties, benefits and risks. Nutr. Res. 18: 1091-1101 (1998) https://doi.org/10.1016/S0271-5317(98)00091-8
  17. Jeon YJ, Kim SK. Effect of antimicrobial activity by chitosan oligosaccharide N-conjugated with asparagine. J. Microbiol. Biotechnol. 11: 281-286 (2001)
  18. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 (1959) https://doi.org/10.1021/ac60147a030
  19. SAS Institute, Inc. SAS User's Guide. Statistical Analysis Systems Institute, Cary, NC, USA (1988)
  20. Bae M, Lee JM. Saccharification of raw starch in ethanol fermentation. Korean J. Appl. Microbiol. Bioeng. 11: 181-185 (1983)