A Thermostable Protease Produced from Bacillus sp. DF 218

Bacillus sp. DF218이 생산하는 내열성 단백질 분해효소

  • 이정희 (단국대학교 식품공학과) ;
  • 배동훈 (단국대학교 식품공학과)
  • Published : 2004.02.28

Abstract

Microorganism (strain DF 218) producing thermostable pretense was isolated from Korean soil and compost. It was Gram-positive, rod-shaped, aerobic, and spore-forming with yellowish white colony color, Temperature range for growth at pH 6.5 was $30-65^{\circ}C$, with optimum growth at $60^{\circ}C$. pH range for growth at $60^{\circ}C$ was 5-7 with optimum of 6.5, which indicates strain DF 218 to be thermophilic. The 16S rDNA sequence of strain DF 218 had 95% sequence similarity with that of Bacillus flexus. Based on physiological properties and phylogenetic analysis, we proposed the isolated strain as Bacillus sp. DF 218. Pretense was produced aerobically at $60^{\circ}C$ for 32 hr in a medium (pH 6.5) containing 1% each trypton, glucose, and NaCl. Its molecular weight was estimated as 61 kDa, with optimum temperature and pH of $60^{\circ}C$ and 7.5, respectively.

전국 각지에서 채집한 토양과 두엄에서 분리한 25종의 내열성 균주 중 내열성 단백질 가수분해효소 활성을 갖는 균주 DF 218을 선별하였다. 본 균주는 Gram 양성 간균의 특징을 나타냈으며 Bergey's manual of systematic bacteriology와 Biochemical tests for identification of medical bacteria에 준하여 생화학적 특성을 검토한 결과 catalase 양성, 포자형성, motility 양성, glucose 발효, hemolysis ${\beta}$균임을 나타내어 Bacillus sp.으로 추정되었다. 165 rDNA sequence 분석 결과 DF 218 균주는 Bacillus flexus과 sequence가 95% 일치하는 유사성을 보였으나 gene bank data base 상에서 165 rDNA sequence가 일치하는 균주는 검색되지 않았다. 이 같은 실험 결과에 따라 strain DF 218은 기존에 발표되지 않은 새로운 균주로 판단되어 Bacillus sp. DF 218로 명명하였다. Bacillus sp. DF 218은 1% trypton, 1% NaCl, 1% glucose의 배지조성과 배양은도 $60^{\circ}C$에서 32시간동안 배양하였을 때 최대의 단백질 분해효소를 생산하였다. Bacillus sp. DF 218로부터 단백질 분해효소를 acetone으로 침전시키고 DEAE-sepharose column chromatography를 통하여 효소를 정제하고 정제된 단백질을 SDS-PAGE를 통해 분석한 결과 61kDa 크기의 단일 band를 확인할 수 있었다. 이 효소의 최적 반응온도는 $60^{\circ}C$이었으며 최적 pH는 7.5로 측정되었다.

Keywords

References

  1. Peckman EV. Aspergillus proteinase. Biochemistry 5: 321-325 (1951)
  2. Crewth WC. The effect of pH and cations on the thermal denaturation of trypsin. J. Biol. Chem. 6: 597-601 (1963)
  3. Massaki Y, Kazuo S, Mitsuo M. Purification and properties of acid protease from Monascus sp. No. 3405. Agric. Biol. Chem. 48: 1637-1645 (1984) https://doi.org/10.1271/bbb1961.48.1637
  4. Kageyama K. Studies on Aspergillus oryzae strain for sake brewing. J. Ferment. Technol. 33: 53-57 (1955)
  5. Nunokawa Y, Namba Y, Watanabe S. A study of the rice koji protease. J. Soc. Brew. 53: 930-933 (1961)
  6. Horikoshi K. Production of alkaline enzymes by alkalophilic microorganisims. Part I. Alkaline protease produced by Bacillus sp. No. 221. Agric. Biol. Chem. 35: 1407-1414 (1971) https://doi.org/10.1271/bbb1961.35.1407
  7. Ward OP. Proteolytic enzymes, Vol. III, pp. 789-818. In: Comprehensive Biotechnology. Elsevier, New York, NY, USA (1986)
  8. Durham DR, Stewart DB, Stellwag EJ. Novel alkaline and heat stable serine protease from alkalophilic Bacillus sp. strain GX6638. J. Bacteriol. 169: 2762-2768 (1987) https://doi.org/10.1128/jb.169.6.2762-2768.1987
  9. Kobayashi T, Ogasawara A, Ito S, Saitoh M. Purification and some properties of alkaline proteinase produced by Pseudomonas maltophilia. Agric. Biol. Chem. 49: 693-698 (1985) https://doi.org/10.1271/bbb1961.49.693
  10. Nakadai T, Nasuno S, Iguchi N. Purification and some properties of alkaline proteinase from Aspergillus oryzae. Agric. Biol. Chem. 37: 2685-2694 (1973) https://doi.org/10.1271/bbb1961.37.2685
  11. Kim HK, Kim KH, Lee JK, Kim YO, Nam HS, Oh TK. Characterization of a thermostable protease from thermophilic Bacillus amyloliquefaciens NS 15-4. Korean J. Appl. Microbiol. Biotechnol. 23: 322-328 (1995)
  12. Michels PC, Douglass C. Pressure-enhanced activity and stability of a hyperthermophilic protease from a deep-sea methanogen. Appl. Environ. Microbiol. 63: 3985-3991 (1997)
  13. Kreig NR, Halt JG. Bergey's Manual of Systematic Bacteriology. Williams and Wilkins Co., Baltimore, MD, USA (1984)
  14. MacFaddin JF. Biochemical Tests for Identification of Medical Bacteria. 2nd ed. Williams & Wilkins, Baltimore, MD, USA (1990)
  15. Davis LG, Dibner MD, Battey JF. Basic Method in Molecular Biology. Elsevier, New York, NY, USA. p. 42 (1986)
  16. Beynon RJ, Bond JS. Proteolytic Enzymes-a Practical Approach, IRL press, Oxford, UK (1989)
  17. Banerjee UC, Sani RK, Azimi W, Soni R. Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive. Process Biochem. 30: 213-219 (1999)
  18. Tasi Y, Juang R, Lin S, Chen S, Yamasaki M, Tamura G. Production and further characterization of an alkalophilic elastase produced by alkalophilic Bacillus strain Ya-B. Appl. Environ. Microbiol. 54: 3156-3161 (1998)
  19. Vazquez D, Cantera MB. A simple and rapid technique for postelectrophoretic detection of protease using azocasein. Electrophoresis 16: 1894-1897 (1995) https://doi.org/10.1002/elps.11501601311
  20. Priest FG, Goodfellow M, Todd C. A numerical classification of the genus Bacillus. J. Gen. Microbiol. 134: 1847-1882 (1988)