Optimal Extract Methods of Antioxidant Compounds from Coat of Grape Dreg

포도부산물인 과피로부터 항산화 물질 최적 추출방법 확립

  • Yoo, Mi-Ae (Department of Food Science & Nutrition, College of Natural Science, Hoseo University) ;
  • Chung, Hae-Kyung (Department of Food Science & Nutrition, College of Natural Science, Hoseo University) ;
  • Kang, Myung-Hwa (Department of Food Science & Nutrition, College of Natural Science, Hoseo University)
  • 유미애 (호서대학교 자연과학부 식품영양전공) ;
  • 정혜경 (호서대학교 자연과학부 식품영양전공) ;
  • 강명화 (호서대학교 자연과학부 식품영양전공)
  • Published : 2004.02.28

Abstract

Optimal extraction method for antioxidant compounds from coat of grape dreg was established. Extracts were prepared with ethanol solutions containing phosphoric, formic, acetic, HCl, TFA, and citric acids. Antioxidant compounds of grape coat were determined by HPLC analysis and evaluated for antioxidizing effects using in vitro model system. Peonidin-3-glucoside content was the highest in 0.1% HCl-added ethanol extract. The extract prepared from pure ethanol without organic acids showed the highest content of cyanidin-3-glucoside among samples tested. Resveratrol and quercetin contents, the most important antioxidants, were highest in 0,1% HCl-added extract. Electron-donating ability was high in 0.1% acetic acid-added extract. SOD-like activities were 95.08% and 94.39% in 0.1% formic and 0.1% citric acid extracts, respectively. Inhibitory effects on peroxidation of egg yolk lecithin were observed in phosphoric (60.51%), citric (59,27%), and formic acid (56,77%) extracts. Hydrogen radical-scavenging activity was 59.47% in 0,1% HCl extract. Results suggest addition of 0.1% HCl in ethanol solution affords the highest yield in antioxidant compounds and antioxidant activities.

Anthocyanin색소의 추출은 일반적으로 산을 첨가하면 그 추출효율이 증가한다고 보고되어진 바가 있다. 따라서 본 실험에서는 campbell early 포도의 부산물인 과피로부터 항산화 물질을 추출하기 위한 최적추출조건을 확립하기 위하여 ethanol 용매에 산의 종류를 달리하여 추출한 후 anthocyanin, resveratrol, quercetin함량을 측정하고, 이들의 항산화 효과를 분석하였다. 그 결과, anthocyanin색소 중 peonidin-3-glucoside는 0.1% HCl을 첨가한 추출물에서 가장 효과적이었으며, cyanidin-3-glucoside는 오히려 산을 첨가하지 않은 ethanol 용매에서 추출한 campbell early 과피 추출물이 가장 효과적이었다. 또한 항산화 활성을 가지고 있는 페놀성 화합물인 resveratrol과 quercetin의 함량은 0.1% HCl을 첨가한 campbell early 과피 추출물에서 각각 8.1 mg/100g coats로 다른 종류의 산을 처리한 것보다 더 많은 양이 함유되어 있는 것으로 나타났다. DPPH에 의한 항산화 효과 측정에서는 산을 첨가한 추출물 모두 15분 이내에 모든 반응이 정지되었으며, 대조군에 비해 높은 전자공여능을 보였다. Lecithin을 이용한 TBARS는 citric acid와 phosphoric acid, formic acid를 첨가한 경우 각각 59.3, 60.5, 56.8%로 유의적으로 높은 수준을 보였다. 이러한 결과로부터 campbell early 과피에 0.1% HCl가 첨가된 ethanol용매로 추출시 항산화 활성이 높은 추출물을 제조할 수 있었다.

Keywords

References

  1. Sastre I, Vicente MA, Lobo CM. Influence of the application of sewage sludges on soil microbial activity. Bioresour. Technol. 57: 19-23 (1996) https://doi.org/10.1016/0960-8524(96)00035-1
  2. Faure D, Deschamps A. Physicochemical and microbiological aspects in composting of grape pulps. Agric. Wastes 34: 251-528 (1990)
  3. Costa F, Moreno JL, Hernandez T, Lax A, Cegarra J, Roig A. Mineralization of organic materials in a calcareous soil. Agric. Wastes 28: 189-201 (1989)
  4. Stojanovic S, Stojsvljervic T, Vunurevic N, Vikicvranjes M, Mandic A. Nutritive and feeding value of dried grape pomace in feeding fattening cattle. Stocarstvo 43: 313-319 (1989)
  5. Jang JK, Han JY. The antioxidant ability of grape seed extracts. Korean J. Food Sci. Technol. 34: 524-528 (2002)
  6. Chung HY, Yoon SJ. Antioxidant activity of grape seed ethanol extract according to serial solvent fractionation. J. Korean Soc. Food Sci. Nutr. 31: 1092-1096 (2002) https://doi.org/10.3746/jkfn.2002.31.6.1092
  7. Negro C, Tommasi L, Miceli A. Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresour. Technol. 87: 41-44 (2003) https://doi.org/10.1016/S0960-8524(02)00202-X
  8. Park JM, Joo KJ. Stability of anthocyanin pigment from juice of raspberries. J. Korean Soc. Food Sci. Nutr. 11: 67-74 (1982)
  9. Murai K, Wilkins D. Natural red color derived from red cabbage. Food Technol. 44: 131 (1990)
  10. Lee JW, Lee HH, Rhim JW. Extraction characteristics of red flower cabbage pigment. Korean J. Food Sci. Technol. 33: 149-152 (2001)
  11. Oh SK, Choi HC, Cho MY, Kim SU. Extraction method of anthocyanin and tannin pigments in colored rice. Agric. Chem. Biotechnol. 39:149-152(1996)
  12. Kim KS, Lee JK. Effects of addition ratio of pigmented rice on the quality characteristics of seolgiddeok. Korean J. Soc. Food Sci. 15: 507-511 (1999)
  13. Rhim JW, Kim SJ. Characterictics and stability of anthocyanin pigment extracted from purple fleshed potato. Korean J. Food Sci. Technol. 31: 348-355 (1999)
  14. Lee JW, Lee HH, Rhim JH, Cho JS. Determination of the conditions for anthocyanin extraction from purple fleshed sweet potato. J. Korean Soc. Food Sci. Nutr. 29: 790-795 (2000)
  15. Lee LS, Kim SJ, Rhim JW. Analysis of anthocyanin pigments from purple fleshed sweet potato. J. Korean Soc. Food Sci. Nutr. 29: 555-560 (2000)
  16. Henry BS. Natural food colors. 2nd ed. pp. 39-78. In: Natural Food Colorants. Hendry GAF, Houghton JD (eds). Blackie and Son Ltd., Glasgo, Great Britain (1996)
  17. Lee HH, Lee JW, Rhim JW. Characteristics of anthocyanins from various fruits and vegetables. Korean J. Postharvest Sci. Technol. 7: 285-290 (2000)
  18. Yoon TH, Lee SW. Stability of anthocyanins in foods. Korean J. Food Sci. Technol. 11: 63-73 (1979)
  19. Hendry GAF. Natural pigments in biology. 2nd ed. pp. 1-38. In: Natural Food Colorants, Hendry GAF, Houghton JD (ed). Houghton Blackie A&P, Great Britain (1992)
  20. Koeppen BH, Basson DS. The anthocyanin pigments of Barlinka grapes. Phytochemistry (Oxford) 5: 183 (1966) https://doi.org/10.1016/S0031-9422(00)85097-9
  21. Shim KH, Kang KS, Choi JS, Seo KI, Moon JS. Isolation and stability of anthocyanin pigments in peels. J. Korean Soc. Food Nutr. 23: 279-286 (1994)
  22. Frankel E, kanner J, German JB, Parks E, Kinsella JE. Inhibition of oxidation of human low density lipoprotein by phenolic substances in red wine. Lancet 34: 454-457 (1993)
  23. Frankel E, Waterhouse AL, Tessedre PL. Principal phenolic phytochemicals in selected California wines and their antioxidant activity inhibiting oxidation of human low density lipoproteins. J. Agric. Food Chem. 43: 890-894 (1995) https://doi.org/10.1021/jf00052a008
  24. Fuleki T, Francis FJ. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J. Food Sci. 33: 72-77 (1968) https://doi.org/10.1111/j.1365-2621.1968.tb00887.x
  25. Jackman RL, Yada RY, Tung MA. Separation and chemical properties of anthocyanins used for their qualitative and quantitative analysis. A review. J. Food Biochem. 11: 279-308 (1987) https://doi.org/10.1111/j.1745-4514.1987.tb00128.x
  26. AOAC. Official Methods of Analysis. 14th ed. Association of official Analytical Chemists, Washington, DC, USA (1980)
  27. Lee ST, Lee YH, Choi YJ, Shon GM, Lee HJ, Heo JS. Comparison of quercetin and soluble tannin in Houttuynia cordata THUNB according to growth stages and plant parts. Korean J. Medicinal Crop Sci. 10: 12-16 (2002)
  28. Pazmino-Duran EA, Giusti MM, Wrolstad RE, Gloria MBA. Antocyanins from banana bracts (Musa X paradisiaca) as potential food colorants. Food Chem. 73: 327-332 (2001) https://doi.org/10.1016/S0308-8146(00)00305-8
  29. Kang MH, Park CG, Cha MS, Seong NS, Chung HK, Lee JB. Component characteristics of each extract prepared by different extract methods from by-products of glycyrrhizia uralensis. J. Korean Soc. Food Sci. Nutr. 30: 138-142 (2001)
  30. Marklund S, Marklund G. Involvement of superoxide anion radical in the oxidation of pyrogallol and convenient assay for superoxide dismmutase. Eur. J. Biochem. 47: 469-474 (1974) https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  31. Tsuda T, Oshinori YF, Katsumi O, Yamamoto A, Kawakishi S, Osawa T. Antioxidative activity of tamarined extract prepared from the seed coat. Nippon Shokuhin Kagaku Kaishi 42: 430-435 (1995) https://doi.org/10.3136/nskkk.42.430
  32. Muller HE. Detection of hydrogen peroxide produced by microorganisms on an ABTS-peroxidase medium. Zbl. Bakt. Hyg. 259: 151-155 (1985)
  33. Chung SK. Hydroxyl radical-scavenging effects of spices and scavengers from brown mustard. Biosci. Biotech. Biochem. 61: 118-123 (1997) https://doi.org/10.1271/bbb.61.118
  34. Katalinic V. Grape catechins-natural antioxidants. J. Wine Res. 10: 15-23 (1999) https://doi.org/10.1080/09571269908718154
  35. Miceli A, Negro C, Tommasi L. Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresour. Technol. 87: 41-44 (2003) https://doi.org/10.1016/S0960-8524(02)00202-X
  36. Kim KS, Ghim SY, Seu YB, Song BH. High level of trans-resveratrol, a natural anti-cancer agent, found in Korean noul red wine. J. Microbiol. Biotechnol. 9: 691-693 (1999)
  37. Kang SK, Kim YD, Hyun KH, Kim YW, Song BH, Shin SC, Park YK. Development of separating techniques on quercetinrelated substances in Onion. J. Korean Soc. Food Sci. Nutr. 27: 682-686 (1998)
  38. Revilla E, Beneytez EG, Cabello F, Ortega GM, Ryan JM. Value of high-performance liquid chromatographic analysis of anthocyanins in the differentiation of red grape cultivars and red wines made from them. J. Chromatogr. 915: 53-60 (2001) https://doi.org/10.1016/S0021-9673(01)00635-5
  39. Heo MY, Yun YP, Park JB. Protective effects of green tea catechins and (-)-epigallocatechin gallate on reactive oxygen species induced oxidative stress. J. Pharm. Soc. Korea 45: 101-107 (2001)
  40. Kim SM, Cha YS, Sung SK. The antioxidant ability and nitrite scavenging ability of plant extracts. Korean J. Food Sci. Technol. 33: 626 (2001)
  41. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA. 90: 7915-7922 (1993) https://doi.org/10.1073/pnas.90.17.7915
  42. Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease. An overview. Methods Enzymol. 186: 1-85 (1990) https://doi.org/10.1016/0076-6879(90)86093-B
  43. Kim YC, Chung SK. Reactive oxygen radical species scavenging effects of Korean medicinal plant leaves. Food Sci. Biotechnol. 11: 407-411 (2002)
  44. Park SW, Chung SK, Park JC. Active oxygen scavenging activity of luteolin-7-O-$\beta$-D-glucoside isolated from Humulus japonicus. J. Korean Soc. Food. Sci. Nutr. 29: 106-110 (2000)