Physiological Effects of Curcumin Extracted by Supercritical Fluid from Turmeric (Curcuma longa L.)

강황(Curcuma longa L.)으로부터 초임계 유체 추출한 curcumin의 생리활성

  • Published : 2004.04.30

Abstract

Physiological effects of curcumin, major yellow-colored pigment in tumeric (Curcuma longa L.), extracted by traditional extracting methods, ethanol and hot-water extractions, and supercritical fluid extraction (SFE) using supercritical carbon dioxide as new extracting method. Antioxidative activity of ethanol extract was higher than those of SFE and hot-water extracts. Results of Ames mutagenicity test on SFE, ethanol, and hot-water extracts revealed no mutagen in the extracts. Antimutagenicity rates of SFE, ethanol, and hot-water extracts against direct mutagen, 2-nitrofluorene (2-NF), were 20.1, 9.3, and 15.2%, respectively. Antimutagenicity rate of SFE extract against TA98 derived from indirect mutagen, 2-acetamidofluorene (2-AF), was 12.2%, whereas none was observed in ethanol and hot-water extracts. Nitrite-scavenging ability of SFE extract was higher than those of ethanol and not-water extracts.

Curcumin의 추출효율은 에탄을 추출방법이 가장 높았고, 항산화효과는 에탄올, 초임계, 열수 추출물 순으로 나타났다. Ames의 mutagenicity test를 실시한 결과 각각의 추출물은 돌연변이원이 없는 것으로 확인되었고, TA98에 직접변이원 2-NF 처리시 초임계 추출물의 저해율이 20.1%로 에탄올과 열수 추출물에 비하여 가장 높은 항돌연변이 효과를 나타냈다. 또한 간접 변이원 2-acetamidofluorene($10\;{\mu}L/plate$; Sigma Co.; 2-AF)에 대한 항돌연변이 효과를 알아본 결과 2-AF로 유도된 TA98은 초임계 추출물을 0.1 mL/plate로 처리시 항돌연변이의 효과는 12.2%였으며, 알코올 추출물과 열수 추출물의 경우는 항돌연변이 효과가 나타나지 않았다. Nitrite의 분해능의 경우에 있어서도 에탄올 및 열수 추출물에 비하여 초임계 추출물이 높은 분해율을 나타냈으며 pH 1.2에서 가장 높은 분해율을 보였다. 이와 같이 초임계를 이용해 추출한 curcumin은 항산화효과, nitrite 분해능, 항돌연변이효과 등에 대한 생리활성 기능을 보였으며, 기존의 에탄올이나 열수 추출법에 비하여 유사하거나 더 높은 생리활성 효과가 나타나기도 했다.

Keywords

References

  1. Purseglove JW, Brown EG, Green CL, Robbins SRJ. Spices. Longman Inc., New York, NY, USA. pp. 100-286 (1981)
  2. Taka H. The characterization and application of Curcuma longa. L extracts. New Food Ind. 40: 7-15 (1998)
  3. Rizvi SSH, Benado AL, Zollweg JA, Daniels JA. Supercritical fluid extraction fundamental principles and modeling methods. Food Technol. 40: 55-65 (1986)
  4. Rizvi SSH, Daniels JA, Benado AL, Zollweg JA. Supercritical fluid extraction operating principles and food applications. Food Technol. 40: 57-64 (1986)
  5. JOCS. Standard methods for the analysis of fats, oil and related materials. Japan Oil Chemists Society, Nihonbashi, TK, Japan (1996)
  6. Ames BN. Dietary carcinogen and anticarcinogens. Science 221: 1256-1264 (1983) https://doi.org/10.1126/science.6351251
  7. Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F. Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric. Bio. Chem. 51: 1333-1338 (1987) https://doi.org/10.1271/bbb1961.51.1333
  8. Ahn CK. Antioxidative effects of spices and their synergism with catechin and ascorbic acid. PhD thesis, Sookmyung Women's University, Seoul, Korea (1998)
  9. Kang WS, Kim JH, Park EJ, Yoon KR. Antioxidative property of turmeric (Curcumae Rhizoma) ethanol extract. Korean J. Food Sci. Technol. 30: 266-271 (1998)
  10. Lee JS. Physiological effects of Instant curry and curry raw materials. PhD thesis, Sungkyunkwan University, Seoul, Korea (2002)
  11. Soni KB, Lahiri M, Chackradeo P, Bhide SV, Kuttan R. Protective effect of food additives on aflatoxin-induced mutagenicity and hepato carcinogenicity. Cancer Lett. 115: 129-133 (1997) https://doi.org/10.1016/S0304-3835(97)04710-1
  12. Huang MT, Smart RC, Wong CO, Conney AH. Inhibitory effect of curcumin, chlorgenic acid, caffeic acid and ferulic acid on tumor promotion in mouse skin by 12-O-tetraphorbl-13-acetate. Cancer Res. 48: 5941-5946 (1988)
  13. Kim JH, Park KM. Nitrite scavenging and superoxide dismutaselike activities of herbs, spices and curry. Korean J. Food Sci. Technol. 32: 706-712 (2000)
  14. Kyrtopoulos SA. Ascorbic acid and formation of N-nitroso compounds: possible role of ascorbic acid in cancer prevention. Am. J. Clin. Nutr. 45: 1344-1350 (1987) https://doi.org/10.1093/ajcn/45.5.1344