Increase in Moisture Barrier Properties of Alginate-based Films by Composting with Fatty Acids and $CaCl_{2}$ Treatment

지방산과 $CaCl_{2}$ 처리에 의한 알긴산 필름의 수분저항성 증진

  • Rhim, Jong-Whan (Department of Food Engineering, Mokpo National University) ;
  • Kim, Ji-Hye (Department of Food Engineering, Mokpo National University)
  • Published : 2004.06.30

Abstract

Increase in water vapor barrier properties of sodium alginate films was studied by preparing composite films with fatty acids, i.e., lauric, palmitic, stearic, and oleic acids, and by treatment with 3% $CaCl_{2}$ solution for 3 min. Film thickness, surface color, microstructure, tensile strength (TS), elongation at break (E), water vapor permeability (WVP), water solubility (WS), and sorption isotherm of films were investigated. Microstructure of films observed with SEM was changed by fatty acid and $CaCl_{2}$ treatments. TS decreased 25-70% depending on fatty acid used, and increased 1.5- to 2-fold by $CaCl_{2}$ treatment. E decreased by both fatty acid and $CaCl_{2}$ treatments. Except oleic acid, WVP decreased significantly (p<0.05) by forming composite films with fatty acids, particularly with stearic acid, WVP decreased more than two-fold. WS also decreased by fatty acid and $CaCl_{2}$ treatments. In stearic acid, WS decreased about 30-fold by combined treatment of fatty acid and $CaCl_{2}$. Sorption isotherm showed typical biphasic pattern with deliquescent point of 0.75. Results of isotherms and BET monolayer moisture content indicated hydrophilicity of film decreased by $CaCl_{2}$ treatment.

알긴산 필름의 수분저항 특성을 증진시키기 위하여 지방산 (lauric, palmitic, stearic, oleic acid)과 복합필름을 제조하고 $CaCl_{2}$용액으로 처리하고, 이들의 처리 효과를 필름의 두께, 표면색, 미세구조, 인장강도, 신장률, 투습도, 수분용해도 및 등온 흡습곡선을 측정하여 조사하였다. 알긴산 필름은 지방산과의 복합필름을 형성하거나 $CaCl_{2}$ 처리를 하므로 필름의 미세구조가 크게 변하였다. 필름의 인장강도는 사용한 지방산의 종류에 따라 25-70% 정도 감소하였으나, $CaCl_{2}$ 처리에 의해 1.5-2배 증가하였다. 필름의 신장률은 두 가지의 처리에 의해 모두 감소하였다. 투습도는 불포화 지방산인 oleic acid를 제외하고는 지방산과 복합필름을 제조하므로 유의적으로(p<0.05) 감소하였다. 수분용해도 역시 두 가지 처리에 의해 모두 감소하였는데, stearic acid의 경우는 두 가지 방법을 병용하여 사용하므로 수분용해도가 약 30배 정도까지 감소하였다. 모든 알긴산 필름의 등온흡습곡선은 전형적인 두 단계의 변화 양상을 나타냈으며, 그 전환점은 수분활성도 0.75의 범위였다. 등온흡습곡선과 단분자층 수분함량의 결과는 $CaCl_{2}$ 처리에 의해 필름의 친수성이 감소하였음을 나타냈다.

Keywords

References

  1. Kester JJ, Fennema OR. Edible films and coatings: A review. Food Technol. 40(12): 47-59 (1986)
  2. Debeaufort F, Quezada-Gallo JA, Voilley A. Edible films and coatings: Tomorrow's packagings; A review. Crit. Rev. Food Sci. 38: 299-313 (1998) https://doi.org/10.1080/10408699891274219
  3. Krochta JM, De Mulder-Johnston C. Edible and biodegradable polymer films: Challenges and opportunities. Food Technol. 51(2): 61-74 (1997)
  4. Guilbert S, Gontard N, Gorris LGM. Prolongation of the shelf-life of perishable food products using biodegradable films and coatings. Lebensm.-Wiss. u.-Technol. 29: 10-17 (1996) https://doi.org/10.1006/fstl.1996.0002
  5. Cuq B, Gontard N, Guilbert S. Proteins as agricultural polymers for packaging production. Cereal Chem. 75: 1-9 (1998) https://doi.org/10.1094/CCHEM.1998.75.1.1
  6. McHugh TH, Avena-Bustillos R, Krochta JM. Hydrophillic edible films: Modified procedure for water vapor permeability and explanation of thickness effects. J. Food Sci. 58: 899-903 https://doi.org/10.1111/j.1365-2621.1993.tb09387.x
  7. Gennadios A, McHugh TH, Weller CL, Krochta JM. Edible coatings and films based on proteins. pp. 201-277. In: Edible Coatings and Films to Improve Food Quality. Krochta JM, Baldwin EA, Nisperos-Carriedo (eds). Technomic Publishing Co., Inc., Lancaster, PA, USA (1994)
  8. Gennadios A, Ghorpade VM, Weller CL, Hanna MA. Heat curing of soy protein films. Trans ASAE 39: 575-579 (1996)
  9. Rhim JW, Fu D, Gennadios A, Weller CL, Hanna MA. Properties of ultraviolet irradiation protein films. Lebensm. -Wiss. u. -Technol. 32: 129-133 (2000) https://doi.org/10.1006/fstl.1998.0516
  10. Gennadios A, Rhim JW, Handa A, Weller CL, Hanna MA. Ultraviolet radiation affects physical and mechanical properties of soy protein films. J. Food Sci. 63: 225-228 (1998) https://doi.org/10.1111/j.1365-2621.1998.tb15714.x
  11. Rhim JW, Gennadios A, Weller CL, Cezeirat C, Hanna MA. Soy protein isolate-dialdehyde starch films. Ind. Crops Prod. 8: 195-203 (1998) https://doi.org/10.1016/S0926-6690(98)00003-X
  12. Rhim JW, Weller CL. Properties of formaldehyde adsorbed soy protein isolate films. Food Sci. Biotechnol. 9: 228-233 (2000)
  13. Stuchell, YM, Krochta JM. Enzymatic treatments and thermal effects on edible soy protein films. J. Food Sci. 59: 1332-1337 (1994) https://doi.org/10.1111/j.1365-2621.1994.tb14709.x
  14. Motoki M, Aso H, Seguro K, Nio N. $\alpha$ sl-casein film prepared using transglutaminase. Agric. Biol. Chem. 51: 993-996 (1987) https://doi.org/10.1271/bbb1961.51.993
  15. Rhim JW, Kim JH, Kim DH. Modification of Na-alginate films by CaCl2 treatment. Korean J. Food Sci. Technol. 35: 217-221 (2003)
  16. Rhim JW. Physical and mechanical properties of water resistant sodium alginate films. Lebensm. -Wiss. u. -Technol. 37: 323-330 (2004) https://doi.org/10.1016/j.lwt.2003.09.008
  17. Pavlath AE, Gossett C, Camirand W, Robertson GH. Ionomeric films of alginic acid. J. Food Sci. 64: 61-63 (1999) https://doi.org/10.1111/j.1365-2621.1999.tb09861.x
  18. Pavlath AE, Voisin A, Robertson GH. Pectin-based biodegradable water insoluble films. Macromol. Symp. 140: 107-113 (1999)
  19. Park HJ, Rhim JW, Jung ST, Kang SK, Hwang KT, Park YK. Mechanical properties of carrageenan-based biopolymer films. J. Korean Soc. Pack. Sci. Technol. 1: 38-50 (1995)
  20. Koelsch C. Edible water vapor barrier: Properties and promise. Trends Food Sci. Technol. 51: 76-81 (1994)
  21. Gennadios A, Brandenburg AH, Weller CL, Testin RF. Effects of pH on properties of wheat gluten and soy protein isolate films. J. Agric. Food Chem. 41: 1935-1939 (1993)
  22. Greener IK, Fennema O. Barrier properties and surface characteristics of edible bilayer films. J. Food Sci. 54: 1393-1399 (1989) https://doi.org/10.1111/j.1365-2621.1989.tb05120.x
  23. Greener IK, Fennema O. Evaluation of edible, bilayer films for use as moisture barriers for food. J. Food Sci. 54: 1400-1406 (1989) https://doi.org/10.1111/j.1365-2621.1989.tb05121.x
  24. agenmaier RD, Shaw PE. Moisture permeability of edible films made with fatty acid and (hydroxypropyl) methylcellulose. J. Agric. Food Chem. 38: 1799-1803 (1990) https://doi.org/10.1021/jf00099a004
  25. Kamper SL, Fennema O. Water vapor permeability of edible bilayer films. J. Food Sci. 49: 1478-1481, 1485 (1984) https://doi.org/10.1111/j.1365-2621.1984.tb12825.x
  26. Kamper SL, Fennema O. Water vapor permeability of an edible, fatty acid bilayer film. J. Food Sci. 49: 1482-1485 (1984) https://doi.org/10.1111/j.1365-2621.1984.tb12826.x
  27. Kamper SL, Fennema O. Use of an edible film to maintain water vapor gradient in foods. J. Food Sci. 50: 382-284 (1985) https://doi.org/10.1111/j.1365-2621.1985.tb13408.x
  28. Kester JJ, Fennema O. An edible film of lipids and cellulose ethers: Barrier properties to moisture vapor transmission and structural evaluation. J. Food Sci. 54: 1383-1389 1989 (1989) https://doi.org/10.1111/j.1365-2621.1989.tb05118.x
  29. Martin-Polo M, Mauguin C, Voilley A. Hydrophobic films and their efficiency against moisture transfer. 1. Influence of the film preparation technique. J. Agric. Food Chem. 40: 407-412 (1992) https://doi.org/10.1021/jf00015a009
  30. Martin-Polo M, Voilley A, Blond G, Colas B, Mesnier M, Floquet N. Hydrophbic films and their efficiency against moisture transfer. 1. Influence of the physical state. J. Agric. Food Chem. 40: 413-418 (1992) https://doi.org/10.1021/jf00015a010
  31. Nelson KL, Fennema O. Methylcellulose films to prevent lipid migration in confectionery products. J. Food Sci. 56: 504-509 (1991) https://doi.org/10.1111/j.1365-2621.1991.tb05314.x
  32. Park HJ, Weller, CL, Vergano PJ, Testin RF. Permeability and mechanical properties of cellulose-based edible films. J. Food Sci. 59: 1361-1370 (1993)
  33. Rico-Pena DC, Torres JA. Edible methylcellulose-based films as moisture permeable barriers in sundae ice cream cones. J. Food Sci. 55: 1468-1469 (1990) https://doi.org/10.1111/j.1365-2621.1990.tb03962.x
  34. Voidani F, Torres JA. Potassium sorbates permeability of methylcellulose and hydroxypropyl methylcellulose coatings: Effect of fatty acids. J. Food Sci. 55: 841-846 (1990) https://doi.org/10.1111/j.1365-2621.1990.tb05244.x
  35. Wong DWS, Gastineau FA, Gregorski KS, Tillin SJ, Pavlath AE. Chitosan lipid films: Microstructure and surface energy. J. Agric. Food Chem. 40: 540-544 (1992) https://doi.org/10.1021/jf00016a002
  36. Morillon V, Debeaufort F, Blond G, Capelle M, Voilley A. Factors affecting the moisture permeability of lipid-based edible films: A review. Crit. Rev. Food Sci. Nutr. 42: 67-89 (2002) https://doi.org/10.1080/10408690290825466
  37. Baldwin EA, Nisperos MO, Hagenmaier RD, Baker RA. Use of lipids in coatings for food products. Food Technol. 51(6): 56-62, 64 (1997)
  38. Greener I, Fennema O. Lipid-based edible films and coatings. Lipid Technol. 4: 34-38 (1992)
  39. Callegarin F, Quezada-Gallo JA, Debeaufort F, Voilly A. Lipids and biopackaging. JAOAC 74: 1183-1192 (1997) https://doi.org/10.1007/s11746-997-0044-x
  40. Rhim JW, Wu Y, Weller, CL, Schnepf M. Physical characteristics of emulsified soy protein-fatty acid composite films. Sci. des Alimentas 19: 57-71 (1999)
  41. Labuza TP, Kaanane A, Chen JY. Effect of temperature on the moisture sorption isotherms and water activity shift of two dehydrated foods. J. Food Sci. 50: 385-391 (1985) https://doi.org/10.1111/j.1365-2621.1985.tb13409.x
  42. Bell LN, Labuza TP. Determination of moisture sorption isotherms. pp. 33-56. In: Moisture Sorption: Practical Aspects of Isotherm Measurement and Use. American Association of Cereal Chemists, St. Paul, MN, USA (2000)
  43. SAS Institute, Inc. SAS User's Guide. Statistical Analysis Systems Institute, Cary, NC, USA (1990)
  44. Bell LN, Labuza TP. Moisture sorption isotherms. pp. 14-32. In: Moisture Sorption: Practical Aspects of Isotherm Measurement and Use. American Association of Cereal Chemists, St. Paul, MN, USA (2000)