Optimization of Enzymatic Synthesis Condition of Structured Lipids by Response Surface Methodology

반응표면분석에 의한 기능성 유지의 효소적 합성 조건 최적화

  • Cho, Eun-Jin (Department of Food Science and Technology, Chungnam National University) ;
  • Lee, Jong-Ho (Department of Food Science and Nutrition, Yonsei University) ;
  • Lee, Ki-Teak (Department of Food Science and Technology, Chungnam National University)
  • 조은진 (충남대학교 식품공학과) ;
  • 이종호 (연세대학교 식품영양학과) ;
  • 이기택 (충남대학교 식품공학과)
  • Published : 2004.08.31

Abstract

Synthesis conditions were optimized using response surface methodology for producing structured lipids (SL) by interesterification of DHA-enriched algae oil derived from microalgae, Schizochytrium sp. and corn oil. Reaction was performed fer 24 hr at $55^{\circ}C$ catalyzed by immobilized lipase from Rhizomucor miehei (RM IM) in shaking water bath. Major fatty acids of SL were palmitic (21.70 mol%), oleic (20.20 mol%), and linoleic (27.34 mol%) acids, and DHA (15.06 mol%). To separate newly synthesized SL-triglycerides (TG) species, HPLC with evaporative light scatting detector (ELSD) was used. Production conditions were optimized using central composite design with reaction temperature $(35-75^{\circ}C,\;X_1)$, reaction time $(2-42\;hr,\;X_2)$, and enzyme concentration $(2-14%,\;X_3)$ as variables. When variables were $70.28^{\circ}C\;(X_1),\;28.74\;hr\;(X_2),\;and\;11.30%\;(X_3)$, maximum content of selected three peaks of synthesized SL-TG species was predicted as 6.97 area%.

Omega-3 지방산인 DHA가 풍부하고 이취가 적은 조류(microalgae, Schizochytrum sp.)로부터 지질을 획득하여 이를 옥수수유와 기질로 이용, 고정화효소인 RM IM(from Rhizomucormiehei)을 촉매로 하여 interesterification 반응에 의해 고기능성 유지를 효과적으로 생성하기 위하여 합성조건을 반응표면분석에 의해 최적화하였다. 항온교반수조에서 소량 합성된 재구성 지질의 TG 지방산 조성 분석 결과, 재구성지질에 함유된 DHA의 함량은 15.06mol%를 나타내었고, DHA-enriched algae oil에 과량 함유된 palmitic acid(30.67mo1%), myristic acid(11.64mol%)의 함량은 각각 30, 60% 감소하여 21.70, 4.96 mol%를 보였으며, oleic과 linoleic acid의 함량은 급격히 증가하여 각각 20.20, 27.34 mo1%를 나타내었다. RP HPLC-ELSD system을 이용하여 재구성지질의 TG 형태를 분리한 결과, 두 기질에 존재하지 않은 다수의 새로운 TG peak를 확인한 수 있었으며, 이중 쉽게 식별이 가능한 3개의 peak를 선택, 이들 peak area% 총합을 반응변수로 하고 온도$(35-75^{\circ}C,\;X_1)$, 시간(2-42시간, $X_2$) 및 효소농도(2-14%, $X_3$)를 요인변수로 하여 중심합성계획에 의해 반응조건을 최적화하였다. 그 결과, 온도$(70.28^{\circ}C)$, 시간(28.74시간), 효소농도(11.30%)의 최적합성조건에서 최대값 6.97 area%로 예측되었다.

Keywords

References

  1. Iritani N, Fukuda E, Inoguchi K, Tsubosaka M, Tashiro S. Reduction of lipogenic enzymes by shellfish triglycerides in rat liver. J. Nutr. 110: 1664-1670 (1980) https://doi.org/10.1093/jn/110.8.1664
  2. Simopoulos AP. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 54: 438-463(1991) https://doi.org/10.1093/ajcn/54.3.438
  3. Croft KD, Beilin LJ, Vandongen R, Mathews E. Dietary modification of fatty acid and prostaglandin synthesis in the rat. Effect of variations in the level of dietary fat. Biophys. Acta. 795: 196-207 (1984) https://doi.org/10.1016/0005-2760(84)90066-3
  4. Uauy-Dagach R, Valenzuela A. Marine oils as a source of omega-3 fatty acids in the diet. Prog. Food Nutr. Sci. 16: 199-243 (1992)
  5. Chung KS, Park HS. Effect of DHA-rich fish oil on brain development and learning ability in rats. Korean J. Nutr. Soc. 29: 267-277 (1996)
  6. Bajpai P, Bajpai PK. Eicosapentaenoic acid (EPA) production from microorganisms: a review. J. Biotechnol. 30: 161-183 (1993) https://doi.org/10.1016/0168-1656(93)90111-Y
  7. Choe SN, Choi KJ. Fatty acid composition of sea algaes in the southern sea coast of Korea. Korean J. Food Nutr. 15: 58-63 (2002)
  8. Kim SK, Baek HC, Byun HG, Kang OJ. Biological composition and antioxidative activity of marine microalgae. J. Korean Fish. Soc. 34: 260-267 (2001)
  9. Jennings BH, Akoh CC. Lipase-catalyzed modification of fish oil to incorporate capric acid. Food Chem. 72: 273-278 (2001) https://doi.org/10.1016/S0308-8146(00)00266-1
  10. Akoh CC, Min DB. Food lipids. pp. 877-908. In: Structured Lipids. Akoh CC (ed). Marcel Dekker Inc., New York, USA (2002)
  11. Lee KT, Akoh CC. Structured lipids: Synthesis and applications. Food Rev. Int. 14: 17-34 (1998) https://doi.org/10.1080/87559129809541148
  12. Lee JS, Jang Y, Yang TH. Low-calorie Structured Lipids Synthesis by Enzymatic Transesterification. Ministry of Agriculture and Forestry, Kyonggi, Korea. pp. 15-17 (1999)
  13. Lee KT, Akoh CC. Effects of selected substrate forms on the synthesis of structured lipids by two immobilized lipases. J. Am. Oil Chem. Soc. 74: 579-584 (1997) https://doi.org/10.1007/s11746-997-0183-0
  14. Luddy FE, Barford RA, Herb SF, Magidman P, Riemenschneider RW. Pancreatic lipase hydrolysis of triglycerides by a semimicro technique. J. Am. Oil Chem. Soc. 41: 693-696 (1963) https://doi.org/10.1007/BF02661412
  15. Senanayake SPJN, Shahidi F. Enzyme-catalyzed synthesis of structured lipids via acidolysis of seal (Phoca groenlandica) blubber oil with capric acid. Food Res. Int. 35: 745-752 (2002) https://doi.org/10.1016/S0963-9969(02)00070-4
  16. Cho EJ, Lee KT. Synthesis of structured lipids from corn oil and conjugated linoleic acid with immobilized lipase-catalyzed reaction. Korean J. Food Sci. Technol. 35: 797-802 (2003)
  17. Lee KT, Jones KC, Foglia TA. Separation of structured lipids by high performance liquid chromatography. Chromatographia 55: 197-201 (2002) https://doi.org/10.1007/BF02492142
  18. Lee KT, Foglia TA. Synthesis, purification, and characterization of structured lipids produced from chicken fat. J. Am. Oil Chem. Soc. 77: 1027-1034 (2000) https://doi.org/10.1007/s11746-000-0163-9
  19. Sung NK. SAS/STAT Regression Analysis. Freedom Academy, Seoul, Korea. pp. 237-286 (2000)
  20. Fomuso LB, Akoh CC. Lipase-catalyzed acidolysis of olive oil and caprylic acid in a bench-scale packed bed bioreactor. Food Res. Int. 35: 15-21 (2002) https://doi.org/10.1016/S0963-9969(00)00158-7
  21. Ko SN, Kim H, Lee, KT, Ha TY, Chung SH, Lee SM, Kim IH. Optimization of enzymatic synthesis of structured lipid with perilla oil and medium chain fatty acid. Food Sci. Biotechnol. 12: 253-256 (2003)
  22. Insel P, Turner RE, Ross D. Nutrition. Jones and Bartlett Publishers, London, UK. pp. 136-177 (2001)
  23. Lee HS. Basic Nutrition. Kyomunsa, Seoul, Korea. pp. 86-96 (1999)
  24. Ruiz-Gutierrez V, Barron LJR. Methods for the analysis of triacylglycerols. J. Chromatogr. B 671: 133-168 (1995) https://doi.org/10.1016/0378-4347(95)00093-X