Quantifying Uncertainty of Calcium Determination in Infant Formula by AAS and ICP-AES

AAS 및 ICP-AES에 의한 조제분유 중 칼슘 함량 분석의 측정불확도 산정

  • Jun, Jang-Young (Research and Development Center, Namyang Dairy Products Corporation) ;
  • Kwak, Byung-Man (Research and Development Center, Namyang Dairy Products Corporation) ;
  • Ahn, Jang-Hyuk (Research and Development Center, Namyang Dairy Products Corporation) ;
  • Kong, Un-Young (Research and Development Center, Namyang Dairy Products Corporation)
  • 전장영 (남양유업(주) 중앙연구소) ;
  • 곽병만 (남양유업(주) 중앙연구소) ;
  • 안장혁 (남양유업(주) 중앙연구소) ;
  • 공운영 (남양유업(주) 중앙연구소)
  • Published : 2004.10.31

Abstract

Uncertainty was quantified to evaluate calcium determination result in infant formula with AAS (Atomic Absorption Spectrometry) and ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Uncertainty sources in measurand, such as sample weight, final volume of sample, sample dilution and the instrumental result were identified and used as parameters for combined standard uncertainty based on the GUM (Guide to the expression of uncertainty in measurement) and Draft EURACHEM/CITAC Guide. Uncertainty components of each sources in measurand were identified as resolution, reproducibility and stability of chemical balance, standard material purity, standard material molecular weight, standard solution concentration, standard solution dilution factor, sample dilution factor, calibration curve, recovery, instrumental precision, reproducibility, and stability, Each uncertainty components were evaluated by uncertainty types and included to calculate combined uncertainty. The kinds of uncertainty sources and components in the analytical method by AAS and ICP-AES were same except sample dilution factor for AAS. The analytical results and combined standard uncertainties of calcium content were estimated within the certification range $(367{\pm}20\;mg/100g)$ of CRM (Certified Reference Material) and were not significantly different between method by AAS followed by ashing and method by ICP-AES followed by acid digestion as $359.52{\pm}23.61\;mg/100g\;and\;354.75{\pm}16.16\;mg/100g$, respectively. Identifying uncertainty sources related with precision, repeatability, stability, and maintaining proper instrumental conditions as well as personal proficiency was needed to reduce analytical error.

건식분해에 의한 AAS법과 습식분해에 의한 ICP법을 이용하여 조제분유 중 칼슘 함량을 측정하는 과정중의 측정불확도를 비교산정하기 위하여 분석결과에 영향을 주는 불확도 인자를 파악하고 각각의 불확도를 계산하였다. 계산은 GUM(Guide to the expression of Uncertainty in Measurement)과 Draft EURACHEMCITAC Guide에 근거한 수학적 계산 및 통계처리 방법에 의해 처리하였다. AAS에 의한 칼슘 측정시 uncertainty source로서 시료의 무게, 시료의 최종전량, 시료의 희석 그리고 기기에 의한 측정결과값 등이 작용하였다. Uncertainty source의 개별구성요소인 uncertainty component는 저울의 안정성, 분해능, 재현성, 표준액의 순도, 분자량, 농도, 표준액 희석 및 시료의 희석, 검정선, 회수율 그리고 분석기기의 정밀성, 재현성 및 안정성 등이 작용하였으며 A type 또는 B type으로 불확도를 산정하였다. ICP에 의한 칼슘 측정시 uncertainty souce와 component는 시료의 희석부분을 제외하고 AAS와 동일하게 작용하였다. 칼슘함량과 측정불확도가 보장된 인증표준물질인 Infant Formula SRM 1846을 사용하여 칼슘함량을 측정한 결과 AAS법에 의한 결과값과 ICP법에 의한 결과값은 각각 $359.52{\pm}23.61\;mg/100g$, $354.75{\pm}16.16mg/100g$으로 측정되었다. 2가지 방법 모두 인증 값인 칼슘함량 $367{\pm}20mg/100g$의 범위내로 측정되었으며, CRM에서 보장된 균일성과 실험오차를 고려하면 유사한 결과가 산출되었음을 알 수 있다(p<0.05). 측정불확도를 시험담당자가 시험수행시마다 파악하고 계산하기란 시간적, 인력적 제약과 업무효율적 측면에서 현실적으로 어려운 점이 많다. 그러나, 본 연구에서와 같이 시험과정 중의 분석오차 발생인자를 파악하고 최종 시험결과에 미치는 영향정도를 산출하여 그 인자들을 최소화하여야 할 것으로 사료된다. 즉, 측정불확도는 불확도인자 설정과 계산에 있어서 다양한 방법이 제시될 수 있으므로 수치화된 결과값 그 자체보다는 표준시약의 소급성 유지, 시험기구의 교정 관리, 시험실 환경 관리, 분석기기의 최적상태 유지 및 개인숙련도 향상 등과 같은 노력을 통해 시험결과의 품질을 최상으로 유지하는 척도로 활용되어야 할 것으로 사료된다.

Keywords

References

  1. Korea Food and Drug Administration. Food Standards Codex. Korean Foods Industry Association, Seoul, Korea (2004)
  2. Official CODEX Standards, CODEX Standard for Infant Formula, CODEX STAN 72, p. 1. CODEX Alimentarius Commission, FAO/WHO, Italy, Rome (1981)
  3. Allen LH, Wood RJ. Modern Nutrition in Health and Disease, 8th ed. Lea & Febiger, Philadelphia, PA, USA (1994)
  4. AOAC. Official Methods of Analysis of AOAC Int. 17th ed. Method 944. 03. Association of Official Analytical Communities, Gaithersbrug, MD, USA (2000)
  5. AOAC. Official Methods of Analysis of AOAC Int. 17th ed. Method 962. 01. Association of Official Analytical Communities, Gaithersbrug, MD, USA (2000)
  6. Korea Food and Drug Administration. Food Standards Codex. pp. 521-522, 810-812. Korean Foods Industry Association, Seoul, Korea (2004)
  7. AOAC. Official Methods of Analysis of AOAC Int. 17th ed. Ch 50, pp. 15-17. Association of Official Analytical Communities, Gaithersbrug, MD, USA (2000)
  8. AOAC. Official Methods of Analysis of AOAC Int. 17th ed. Ch 50, pp. 17-18. Association of Official Analytical Communities, Gaithersbrug, MD, USA (2000)
  9. ISO. Guide to the Expression of Uncertainty in Measurements. International Organization for Standardization (ISO), Geneva, Switzerland (1993)
  10. NIST. Guideline for Evaluating and Expressing the Uncertainty of NIST Measurement Results. NIST Technical Note 1297, NIST, Gaithersburg, MD, USA (1993)
  11. EURACHEM. Quantifying Uncertainty in Analytical Measurements 2nd ed. EURACHEM, London, UK (1999)
  12. KRISS. Guide to the Expression of Uncertainty in Measurement. KRISS, Daejon, Korea (1998)
  13. Korea Laboratory Accreditation Scheme. Guideline for Quantifying and Expressing the Uncertainty in Measurement Results. Korea Laboratory Accreditation Scheme, Daejon, Korea (2000)
  14. Kim BJ, Kim DH, Choi JO, So HY. Quantitative analysis of trace pp'-dde in corn oil by isotope dilution mass spectrometry: uncertainty evaluations. Bull. Korean Chem. Soc. 20: 910-916 (1999)
  15. Kim YJ, Kim HW. Estimation of measurement uncertainty in vitamin C analysis from vegetable and fruit juice. Korean J. Food Sci. Technol. 35: 1053-1059 (2003)
  16. IUPAC. IUPAC commission on atomic weight and isotopic abundances. J. Pure Appl. Chem. 71: 1593-1607 (1999) https://doi.org/10.1351/pac199971081593