Weight Reduction and Lipid Lowering Effects of Kimchi Lactic Acid Powder in Rats Fed High Fat Diets

고지방식이를 섭취한 흰쥐에서 김치유산균분말의 비만 억제 및 지질 저하 효과

  • Kwon, Jin-Young (Department of Food Science and Nutrition/Kimchi Research Institute, Pusan National University) ;
  • Cheigh, Hong-Sik (Department of Food Science and Nutrition/Kimchi Research Institute, Pusan National University) ;
  • Song, Yeong-Ok (Department of Food Science and Nutrition/Kimchi Research Institute, Pusan National University)
  • 권진영 (부산대학교 식품영양학과) ;
  • 최홍식 (부산대학교 식품영양학과) ;
  • 송영옥 (부산대학교 식품영양학과)
  • Published : 2004.12.31

Abstract

Effects of kimchi lactic acid powder (KL) on weight reduction and lipid-lowering activities were studied using rats fed high fat diet. Spraque Dawley (40 rats) were fed 20% (w/w) high fat diet far 8 weeks to induce obesity and divided equally into normal diet (ND), high fat diet (HFD), and 10 and 20% KL-added groups. Body weight of HFD was 150% (p<0.01) of ND, while those of HFK10 and HFK20 decreased by 13 and 15% compared to HFD, respectively (p<0.01). Amounts of visceral fats for HFK10 and HFK20 were decreased by 42 and 48% compared to that of HFD (198% of ND), respectively (p<0.01). B had greater effect on reducing visceral fats than body weight. Plasma triglyceride (155%), cholesterol (129%), and LDL (161%) concentrations of HFD, which had been significantly increased compared to ND, dropped by 26, 9, and 8% (p<0.01) in HFK10, and 35, 17, and 33% (p<0.05) in HFK20, respectively. Decreased HDL by high fat diet was re-increased by KL supplementation. KL showed lipid-lowering and liver-protecting effects in liver possibly by interrupting lipid absorption in the intestine either by absorbing lipids in their cell walls or degrading them rapidly. Increased excretion of TG and cholesterol in feces of HFK10 and HFK20 indicates KL might have similar role to dietary fiber.

김치유산균추출물의 비만억제 및 지질 저하 효과를 20%(w/w) 고지방식이를 섭취시킨 횐 쥐에서 살펴보았다. 제한식이를 하였음에도 불구하고 HFD의 체중은 ND에 비해 약 50%증가 하였고, HFK10 및 HFK20에서는 HFD에 비해 각각 13%그리고 15%(p<0.01) 감소하였다. HFD의 복부지방의 함량은 ND에비해 98% 증가하였고(p<0.01), HFK10 및 HFK20에 서 각각 42%, 48% 유의적으로 감소하여(p<0.01) 체중 저하 효과 보다 복부지방 축적을 억제하는 효과가 더 높은 것으로 나타났다. 혈장 중성지방의 농도는 HFD가 ND에 비해 약 55% 증가하였고(p<0.01), HFK10 및 HFK20은 HFD에 비해 26%, 및 35% 농도 의존적으로 감소하였다(p<0.01). 혈장 총 콜레스테롤 농도 역시 HFK10 및 HFK20에서 농도의존적으로 유의적인 감소를 보였고(p<0.01) LDL 농도는 HFD가 ND보다 61% 정도 증가하였고(p<0.01), HFK10 및 HFK20에서 약 8%, 33%감소하여(p<0.01)총 콜레스테롤 보다 LDL의 감소가 더 현저하였다. HDL은 증가하여 김치유산균추출물의 첨가에 의한 지질 개선 효과가 관찰되었다. 김치 유산균 추출물의 간 기능 개선 효과는 고지방 식이에 의해 유발된 지방간 현상으로 정상대조군에 비해 상승되었던 혈장 AST 및 ALT 활성이 감소됨으로서 관찰되었다. 분변의 지방농도를 HFD와 HFK10 및 HFK20간에 비교하였을 때 중성지방 농도는 각 62%와 111% 정도 현저하게 증가하였고, 콜레스테롤 농도는 HFK20에서 약 31% 정도 증가하였다(p<0.05). 이상의 결과에서 사균의 형태인 김치유산균 추출물은 비만을 억제하고 혈장 지질을 저하시키는 효과가 있음이 확인되었으며, 간 기능 보호효과도 확인되었다. 이러한 김치유산균 추출물의 효과는 장내에서 지방의 흡수를 억제하기 때문으로 생각된다.

Keywords

References

  1. Perdigon G, Nader de Macias ME, Alvarez S, Oliver G, Pesce de Holgado AA. Prevention of gastrointestinal infection using immunobiological methods with milk fermented with Lactobacillus casei and Lactobacillus acidophilus. J. Dairy Res. 57: 255-264 (1990) https://doi.org/10.1017/S002202990002687X
  2. Jun HS, Choi YK, Won YS, Hun BH, Kim JW. Effects of lactic acid bacteria on infection of Salmonella typhimurium in mouse. Korean J. Dairy Sci. 21: 171-182 (1999)
  3. Sahani KM, Ayebo AD. 1980. Role of dietary Lactobacilli in gastrointestinal microecology. Am. J. Clin. Nutri. 33: 2448-2457 (1980) https://doi.org/10.1093/ajcn/33.11.2448
  4. Shida K, Makino K, Morishita A, Takamizawa K, Hachimura S, Ametani A, Sato T, Kumagai Y, Habu S, Kaminogawa S. Lactobacillus casei inhibits antigen-induced IgE secretion through regulation of cytokine production in murine splenocyte cultures. Int Arch. Allergy Immunol. 115: 278-287 (1998) https://doi.org/10.1159/000069458
  5. Rhim KH, Kim JG, Han JH. Effects of fermented milk on rats fed by hypercholesterolemic diet. Korean J. Environ. Hlth. Soc. 19: 77-89 (1993)
  6. Jaspers DA, Massey LK, Luedecke LO. Effect of consuming yogurts prepared with three culture strains on human serum lipoproteins. J. Food Sci. 49: 1178-1181 (1984) https://doi.org/10.1111/j.1365-2621.1984.tb10422.x
  7. Pulusani SR, Rao DR. Whole body, liver and plasma cholesterol levels in rats fed thermophilus, bulgaricus, and acidophilus milks. J. Food Sci. 48: 280-281 (1983) https://doi.org/10.1111/j.1365-2621.1983.tb14850.x
  8. Rao DR, Chawan CB, Pulusani SR. Influence of milk and thermophilus milk on plasma cholesterol levels and hepatic cholesterogenesis in rats. J. Food Sci. 46: 1339-1341 (1981) https://doi.org/10.1111/j.1365-2621.1981.tb04168.x
  9. Grunewald KK. Serum cholesterol levels in rats fed skim milk fermented by Lactobacillus acidophilus. J. Food Sci. 47: 2078- 2079 (1982) https://doi.org/10.1111/j.1365-2621.1982.tb12955.x
  10. Jung HK, Kim ER, Yae HS, Choi SJ, Jung JY, Juhn SL. Cholesterol- lowering effect of lactic acid bacteria and fermented milks as probiotic functional foods. Food Ind. Nutr. 5: 29-35 (2000)
  11. Baek YJ. Lactic acid bacteria and human health. Korean J. Food Nutr. 6: 53-65 (1993)
  12. Kato I, Endo K, Yokokura T. Effects of oral administration of Lactobacillus casei on antitumor responses induced by tumor resection in mice. Int. J. Immunopharmacol. 16: 29-36 (1994) https://doi.org/10.1016/0192-0561(94)90116-3
  13. Kim HH, Han MJ. Inhibition of intestinal bacteria enzymes by Lactic acid bacteria. Yakhak Hoeji. 39: 169-174 (1995)
  14. Kim HS, Ham JS. Antioxidative ability of lactic acid bacteria.Korean J. Food Sci. Ani. Resour. 23: 186-192 (2003)
  15. Kaizu H, Sasaki M, Nakajima H, Suzuki Y. Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. J. Dairy Sci. 76: 2493-2499 (1993) https://doi.org/10.3168/jds.S0022-0302(93)77584-0
  16. Lee HY, Lee Y, Park JH, Seok SH, Cho SA, Baek MW, Kim DJ, Park JH. Effect of probiotic lactic acid bacteria isolates in Korea in cutaneous hypersensitivity rats. Korean J. Lab. Ani. Sci. 19: 117-119 (2003)
  17. Rhee YH, Kang MS. Physico-chemical characteristics and $\beta$- galactosidase activity of Lactobacillus plantarum from kimchi. Agric. Chem. Biotechnol. 39: 54-59 (1996)
  18. Lee SH, No MJ. Viability in artificial gastric and bile juice and antimicrobial activity of some lactic acid bacteria isolated from kimchi. Korean J. Appl. Microbiol. Biotechnol. 25: 617-622 (1997)
  19. Oh CK, Oh MC, Hyon JS, Choi WJ, Lee SH, Kim SH. Depletion of nitrite by lactic acid bacteria isolated from kimchi(I). J. Korean Soc. Food Sci. Nutr. 26: 549-555 (1997)
  20. Oh CK, Oh MC, Hyon JS, Choi WJ, Lee SH, Kim SH. Depletion of nitrite by lactic acid bacteria isolated from kimchi (II). J. Korean Soc. Food Sci. Nutr. 26: 556-562 (1997)
  21. Lee SH, Park NY. Nitrite depletion and antimicrobial activity of lactic acid bacteria isolatd from kimchi. Korean J. Appl. Microbiol. Biotechonol. 28: 39-44 (2000)
  22. Chae O, Shin K, Chung H, Choe T. Immunostimulation effects of mice fed with cell lysate of Lactobacillus plantarum isolated from kimchi. Korean J. Biotechnol. Bioeng. 13: 424-430 (1998)
  23. Shin K, Chae O, Park I, Hong S, Choe T. Antitumor effects of mice fed with cell lysate of Lactobacillus plantarum isolated from kimchi. Korean J. Biotechnol. Bioeng. 13: 357-363 (1998)
  24. Park KY, Kim SH, Son TJ. Antimutagenic activities of cell wall and cytosol fractions of lactic acid bacteria isolated from kimchi. J. Food Sci Nutr. 3: 329-333 (1998)
  25. Kwon MJ, Chun JH, Song YS, Song YO. Daily kimchi consumption and its hypolipidemic effect in middle-aged men. J. Korean Soc. Food Sci. Nutr. 28: 1144-1150 (1999)
  26. Kim HJ, Kwon MJ, Seo JM, Kim JK, Song SH, Suh HS, Song YO. The effect of 3-(4'-hydroxyl-3',5'-dimethoxyphenyl)propionic acid in Chinese cabbage kimchi on lowering hypercholesterolemia. J. Korean Soc. Food Sci. Nutr. 33: 52-58 (2004) https://doi.org/10.3746/jkfn.2004.33.1.052
  27. Choi SH, Kim HJ, Kwon MJ, Baek YH, Song YO. The effect of kimchi pill supplementation on plasma lipid concentration in healthy people. J. Korean Soc. Food Sci. Nutr. 32: 250-255 (2001)
  28. Choi WY, Park KY. Anticancer effects of organic Chinese cabbage kimchi. J. Food Sci. Nutr. 4: 113-116 (1999)
  29. Nomoto K, Miake S, Hashimoto S, Yokokura T, Mutai M, Yoshikai M, Nomoto K. Augmentation of host resistance to Listeria monocytenens infection by Lactobacillus casei. J. Clin Lac Immunol. 17: 91-97 (1985)
  30. Park SY, Ko YT, Jung HK, Yang JO, Chung HS, Kim YB, Ji GE. Effect of various lactic acid bacteria on the serum cholesterol levels in rats and resistance to acid, bile and antibiotics. Korean J. Appl. Microbiol. Biotechnol. 24: 304-310 (1996)
  31. Folch IL, Stanley GH. A simple method for the isolation and purification of total lipids from animal tissue. J. Biochem. 223: 498 (1956)
  32. Gilliland SE, Nelson CR, Maxwell C. Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol. 49: 377- 81 (1985)
  33. Klaver FAM, van der Meer R. The assumed assimilation of cholesterol by lactobacilli and Bifido bacterium bifidum is due to their bile salt deconjugating activity. Appl. Environ. Microbiol. 59: 1120-1124 (1993)
  34. Rasic JL, Vujicic IF, Skrinjar M, Vulic M. Assimilation of cholesterol by some cultures of lactic acid bacteria and bifidobacteria. Biotechnol. Lett. 14: 39-44 (1992) https://doi.org/10.1007/BF01030911
  35. Rasic JL, Vujicic IF, Skrinjar M, Vulic M. Assimilation of cholesterol by some cultures of lactic acid bacteria and bifidobacteria. Biotechnol. Lett. 14: 39-44 (1992) https://doi.org/10.1007/BF01030911
  36. Tahri K, Grill JP, Schneider F. Bifidobacteria strain behavior toward cholesterol: Coprecipitation with bile salts and assimilation. Curr. Microbiol. 33: 187-193 (1996) https://doi.org/10.1007/s002849900098
  37. Sadzikowski MR, Sperry JF, Silkins TD. Cholesterol-reducing bacterium from human feces. Appl. Environ Microbiol. 34: 355- 362 (1977)
  38. Harrison VC, Peat G. Serum cholesterol and bowl flora in the newborn. Am. J. Clin. Nutr. 28: 1351-1355 (1975) https://doi.org/10.1093/ajcn/28.12.1351
  39. Boguslawski W. Wrobel J. An inhibitor of sterol biosynthesis in cow's milk. Nature 247: 210-211 (1974) https://doi.org/10.1038/247210a0
  40. Lin SY, Ayres JW, Winkler W Jr, Sandine WE. Lactobacillus effects on cholesterol: In vitro and in vivo results. J. Dairy Sci. 72: 2885-2899 (1989) https://doi.org/10.3168/jds.S0022-0302(89)79439-X