Mid-Infrared Quantum Cascade Laser

중적외선 양자폭포 레이저

Kim, Eun Gyu
김은규

  • Published : 2004.07.31

Abstract

중적외선 양자폭포 레이저는 반도체 에너지 밴드구조 공학기술과 반도체 에피의 두께를 원자단위로 조절할 수 있는 에피성장 기술이 접목하여 이루어 낸 인공광원(artificial light source)이라 할 수 있다. 전 세계적으로도 극히 제한된 연구그룹만이 성공할 만큼 양자폭포 레이저 기술은 화합물 반도체 기술에 있어서 선진국임을 자랑할 수 있는 첨단기술이다. 이에 반하여 국내에서는 양자폭포 레이저에 관한 연구가 거의 이루어지지 않고 있는 상황이다. 이에 본 총설논문에서는 양자폭포 레이저의 원리, 연구 개발 현황, 응용분야, 향후 연구 개발 방향 등에 관한 기본적인 내용을 소개하고자 한다. PACS numbers: 42.55.P, 71.20.M, 73.20.L

Keywords

References

  1. Intersubband transitions in quantum wells: Physics and Divece Application Ⅱ H.C.Liu;F.Capasso
  2. Science v.264 no.5158 J.Faist;F.Capasso;D.L.Siveo;C.Sirtori;A.L.Hutchinson;A.Y.Cho https://doi.org/10.1126/science.264.5158.553
  3. U. S. Patent 5457 709 F.Capasso;A.Y.Cho;J.Faist;A.L.Huthchinson;S.Luryi;C.Sirtori;D.L.Siveo
  4. Sov. Phys. Semicon v.5 R.Kazarinov;R.A.Suris
  5. IBM J. Res. Devel. v.14 L.Esaki;R.Tsu
  6. Physical Review Letters v.33 no.14 R.Dingle;W.Wiegmann;C.H.Henry https://doi.org/10.1103/PhysRevLett.33.827
  7. IEEE Trans. Electron. Dev. v.ED-30 F.Capasso;W.T.Tsang;G.F.Williams
  8. Applied Physics Letters v.43 no.6 T.C.L.G.Sollner;W.D.Goodhue;P.E.Tannenwald;C.D.Parker;D.D.Peck https://doi.org/10.1063/1.94434
  9. Applied Physics Letters v.48 no.7 F.Capasso;K.Mohammed;A.Y.Cho https://doi.org/10.1063/1.97007
  10. Journal of Applied Physics v.74 no.12 Frequency control of semiconductor lasers B.F.Levine https://doi.org/10.1063/1.354252
  11. IEEE Journal of Quantum Electronics v.30 no.5 Coupled quantum well semiconductors with giant electric field tunable nonlinear optical properties in the infrared F.Capasso;C.Strtori;A.Y.Cho https://doi.org/10.1109/3.303697
  12. Nature v.358 no.6387 F.Capasso;C.Sirtori;J.Faist;D.L.Sivco;S.N.G.Chu;A.Y.Cho https://doi.org/10.1038/358565a0
  13. Journal of Mathematical Physics v.37 no.10 Mesoscopic phenomena in semiconductor nanostructures by quantum design F.Capasso;J.Faist;C.Sirtori https://doi.org/10.1063/1.531669
  14. Nature v.390 no.6660 Controlling the sign of quantum interference by tunnelling from quantum wells J.Faist;F.Capasso;C.Sirtori;K.W.West;L.N.Rfeiffer https://doi.org/10.1038/37562
  15. Journal of Applied Physics v.51 no.11 CHROMIUM AND TELLURIUM REDISTRIBUTION IN GaAs AND Al//0//. //3Ga//0//. //7As GROWN BY MOLECULAR BEAM EPITAXY H.Morkoc;C.Hopkins;C.A.Evans;A.Y.Cho https://doi.org/10.1063/1.327519
  16. Applied Physics Letters v.50 no.14 M.Y.Yen;B.F.Levine;C.G.Bethea;K.K.Choi;A.Y.Cho https://doi.org/10.1063/1.97982
  17. Appl. Phys. Lett. v.53 R.R.Saxena;J.E.Fouquet;V.M.Sardi;R.L.Moon
  18. Journal of Applied Physics v.63 no.8 T.Y.Wang;K.L.Fry;A.Persson;E.H.Reihlen;G.B.Stringfellow https://doi.org/10.1063/1.341008
  19. Les Editions de Physique Wave mechanics applied to semiconductor hetero-structures G.Bastard
  20. Phys. Rev. v.B 35 D.F.Nelson;R.C.Miller;D.A.Kleinmann
  21. Rhys. Rev. v.B 35 D.F.Nelson;R.C.Miller;D.A.Kleinmann
  22. Phys. Rev. v.B 50 C.Sirtori;F.Capasso;J.Faist;S.Scandolo
  23. Ann. Reys. v.133 P.J.Price
  24. Phys. Rev. v.B 40 R.Ferreria;G.Bastad
  25. Applied Physics Letters v.64 no.1 Residues, polycrystalline silicon voids, and active area damage with the polycrystalline silicon buffered local oxidation of silicon isolation process J.Faist;C.Sirtori;F.Capasso;L.Pfeiffer;K.W.West https://doi.org/10.1063/1.110879
  26. IEEE Photonics Technology Letters v.12 no.7 Generation and detection of high-speed pulses of mid-infrared radiation with intersubband semiconductor lasers and detectors R.Paiella;F.Capasso;C.Gmachl;C.G.Bethea;D.L.Sivco;J.Baillargeon;A.L.Hutchinson;A.Y.Cho;H.C.Liu https://doi.org/10.1109/68.853498
  27. Applied Physics Letters v.77 no.2 Monolithic active mode locking of quantum cascade lasers R.Paiella;F.Capasso;C.Gmachl;H.Hwang;D.L.Sivco;A.L.Hutchimson;A.Y.Cho;H.C.Liu https://doi.org/10.1063/1.126913
  28. Science v.290 no.5497 R.Paiella;F.Capasso;C.Gmachl;D.L.Sivco;J.N.Baillargeon;A.L.Hutchinson;A.Y.Cho;H.C.Liu https://doi.org/10.1126/science.290.5497.1739
  29. Phys. Today v.55 F.Capasso;C.Gmachl;D.L.Sivco;A.Y.Cho
  30. J. Mod. Opt. v.45 C.Y.L.Cheung;K.A.Shore
  31. IEEE Photonics Technology Letters v.11 no.5 Terahertz bandwidth prediction for amplitude modulation response of unipolar intersubband semiconductor lasers N.Mustafa;L.Pesquera;C.Y.L.Cheung;K.A.Shore https://doi.org/10.1109/68.759387
  32. IEEE Journal of Quantum Electronics v.38 no.6 Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission F.Capasso(et al) https://doi.org/10.1109/JQE.2002.1005403
  33. IEEE Journal of Quantum Electronics v.38 no.6 Bound-to-continuum and two-phonon resonance, quantum-cascade lasers for high duty cycle, high-temperature operation J.Faist;D.Hofstetter;M.Beck;T.Aellen;M.Rochat;S.Blaster https://doi.org/10.1109/JQE.2002.1005404
  34. Physical Review Letters v.76 no.3 Quantum cascade lasers without intersubband population inversion. J.Faist;F.Capasso;C.Sirtori;D.Sivco;A.Hutchinson;M.Hybertsen;A.Cho https://doi.org/10.1103/PhysRevLett.76.411
  35. Applied Physics Letters v.66 no.5 Vertical transition quantum cascade laser with Bragg confined excited state J.Faist;F.Capasso;C.Sirtori;D.Sivco;A.Hutchinson;A.Cho https://doi.org/10.1063/1.114005
  36. Applied Physics Letters v.68 no.13 C.Sirtori;J.Faist;F.Capasso;D.Sivco;A.Hutchinson;S.Chu;A.Cho https://doi.org/10.1063/1.116654
  37. IEEE Photonics Technology Letters v.9 no.3 Mid-infrared (8.5 μm) semiconductor lasers operating at room temperature C.Sirtori;J.Faist;F.Capasso;D.Sivco;A.Hutchinson;A.Cho https://doi.org/10.1109/68.556051
  38. Nature v.387 no.6635 Laser action by tuning the oscillator strength J.Faist;F.Capasso;C.Sirtori;D.Sivco;A.Hutchinson;A.Cho https://doi.org/10.1038/42872
  39. Science v.276 no.5313 G.Scamarcio;F.Capasso;C.Sirtori;J.Faist;A.Hutchinson;D.Sivco;A.Cho https://doi.org/10.1126/science.276.5313.773
  40. Applied Physics Letters v.73 no.15 High performance interminiband quantum cascade lasers with graded superlattices A.Tredicucci;F.Capasso;C.Gmachl;D.Sivco;A.Hutchinson;A.Cho https://doi.org/10.1063/1.122391
  41. Applied Physics Letters v.72 no.19 High-power inter-miniband lasing in intrinsic superlattices A.Tredicucci;F.Capasso;C.Gmachl;D.Sivco;A.Hutchinson;A.Cho https://doi.org/10.1063/1.121365
  42. Applied Physics Letters v.75 no.11 A.Muller;M.Beck;J.Faist;U.Oesterle https://doi.org/10.1063/1.124738
  43. Applied Physics Letters v.78 High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 mum D.Hofstetter;M.Beck;T.Aellen;J.Faist https://doi.org/10.1063/1.1340865
  44. IEEE Journal of Selected Topics in Quantum Electronics v.5 no.3 High-performance superlattice quantum cascade lasers F.Capasso;A.Tredicucci;C.Gmachl;D.L.Sivco;A.L.Hutchinson;A.Y.Cho;G.Scamrcio https://doi.org/10.1109/2944.788453
  45. Semiconductor Science and Technology v.10 no.5 Infrared spectroscopy and transport of electrons in semiconductor superlattices M.Helm https://doi.org/10.1088/0268-1242/10/5/001
  46. Applied Physics Letters v.70 no.14 Tunable interminiband infrared emission in superlattice electron transport G.Scamarcio;F.Capasso;J.Faist;C.Sirtori;D.L.Sivco;A.L.Hutchinson;A.Y.Cho https://doi.org/10.1063/1.118695
  47. Applied Physics Letters v.66 no.24 Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4 μm wavelength C.Sirtori;J.Faist;F.Capasso;D.L.Sivco;A.L.Hutchinson;A.Y.Cho https://doi.org/10.1063/1.113391
  48. Applied Physics Letters v.61 no.8 C.Sirtori;F.Capasso;D.L.Sivco;S.N.G.Chu;A.Y.Cho https://doi.org/10.1063/1.107749
  49. Annual Review of Materials Science v.16 Compositionally Graded Semiconductors and their Device Applications F.Capasso https://doi.org/10.1146/annurev.ms.16.080186.001403
  50. Applied Physics Letters v.54 no.20 B.Botteldooren;R.Bates https://doi.org/10.1063/1.101191
  51. Applied Physics Letters v.80 no.17 Quantum cascade lasers with double metal-semiconductor waveguide resonators K.Unterrainer;R.Colombelli;C.Gmachl;F.Capasso;H.Hwang;A.Sergent;D.Sivco;A.Cho https://doi.org/10.1063/1.1469657
  52. IEEE J. Select. Topic. Quantumelectron v.6 F.Capasso;C.Gmachl;R.Paiella;A.Tredicucci;A.Hutchinson;D.Sivco;J.Baillargeon;A.Cho;H.Liu
  53. Applied Physics Letters v.66 no.24 Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4 μm wavelength C.Sirtori;J.Faist;F.Capasso;D.L.Sivco;A.L.Hutchinson;A.Y.Cho https://doi.org/10.1063/1.113391
  54. Optics Letters v.23 no.17 C.Sirtori;C.Gmachl;F.Capasso;J.Faist;D.Sivco;A.Hutchinson;A.Y.Cho https://doi.org/10.1364/OL.23.001366
  55. Applied Physics Letters v.76 no.16 Single-mode surface-plasmon laser A.Tredicucci;C.Gmachl;F.Capasso;A.L.Hutchinson;D.L.Sivco;A.Y.Cho https://doi.org/10.1063/1.126183
  56. Appl. Phys. Lett. v.74 A.Tredicucci;C.Gmachl;F.Capasso;D.Sivco;A.Hutchinson;A.Y.Cho
  57. Applied Physics Letters v.78 High-performance quantum cascade lasers (Λ∼11 mum) operating at high temperature (T≥425 K) A.Tahraoui;A.Matlis;S.Slivken;J.Diaz;M.Razeghi https://doi.org/10.1063/1.1343848
  58. Science v.295 no.5553 M.Beck;D.Hofstetter;T.Aellen;J.Faist;U.Oesterle;M.Ilegems;E.Gini;H.Melchior https://doi.org/10.1126/science.1066408
  59. Applied Physics Letters v.81 no.23 High-average-power, high-duty-cycle (Λ∼6 mum) quantum cascade lasers S.Slivken;A.Evans;J.David;M.Razeghi https://doi.org/10.1063/1.1526462
  60. Applied Physics Letters v.80 no.22 High-power (Λ∼9 mum) quantum cascade lasers S.Slivken;Z.Huang;A.Evans;M.Razeghi https://doi.org/10.1063/1.1482782
  61. Electronics Letters v.37 no.5 High peak power (2.2 W) superlattice quantum cascade laser G.Scamarcio;M.Troccoli;F.Capasso;A.L.Hutchinson;D.L.Sivco;A.Y.Cho https://doi.org/10.1049/el:20010221
  62. Applied Physics Letters v.76 no.23 Improved temperature performance of Al0.33Ga0.67As/GaAs quantum-cascade lasers with emission wavelength at Λ≅11 mum P.Kruck;H.Page;C.Sirtori;S.Barbieri;M.Stellmacher;J.Nagle https://doi.org/10.1063/1.126686
  63. IEEE Photonics Technology Letters v.12 no.9 Improved performance of GaAs-AlGaAs superlattice quantum cascade lasers beyond λ=13 μm S.Gianordoli;W.Schrenk;L.Hvozdara;N.Finger;K.Unterrainer;G.Strasser;E.Gornik https://doi.org/10.1109/68.874216
  64. IEEE Photonics Technology Letters v.13 no.6 Demonstration of (λ≈11.5-μm) GaAs-based quantum cascade laser operating on a Peltier cooled element H.Page;A.Robertson;C.Sirtori;C.Becker;G.Glastre;J.Nagle https://doi.org/10.1109/68.924018
  65. Electronics Letters v.37 no.21 λ=8.3 μm GaAs/AlAs quantum cascade lasers incorporating InAs monolayers L.R.Wilson;J.W.Cockburn;D.A.Carder;M.J.Steer;M.Hopkinson;C.K.Chia;R.Airey;G.Hill https://doi.org/10.1049/el:20010865
  66. Applied Physics Letters v.80 no.11 Room-temperature emission of GaAs/AlGaAs superlattice quantum-cascade lasers at 12.6 mum S.Anders;W.Schrenk;E.Gormik;G.Strasser https://doi.org/10.1063/1.1461055
  67. Semiconductor Science and Technology v.15 no.12 High-performance strain-compensated InGaAs/InAlAs quantum cascade lasers F.Q.Liu;Y.Z.Zhang;Q.S.Zhang;D.Ding;B.Xu;Z.G.Wang;D.S.Sheng;B.Q.Sun https://doi.org/10.1088/0268-1242/15/12/102
  68. Solid-State Electronics v.45 no.10 Growth and characterization of InGaAs/InAlAs quantum cascade lasers F.Q.Liu;Q.S.Zhang;Y.Z.Zhang;D.Ding;B.Xu;Z.G.Wang https://doi.org/10.1016/S0038-1101(01)00172-1
  69. IEEE J. Quantum Electron. v.QE-23 M.Osinski;J.Buus
  70. Opt. Photon. News v.10 F.Capasso;C.Gmachl;A.Tredicucci;A.L.Hutchinson;D.L.Sivco;A.Y.Cho
  71. Analytical Chemistry v.72 no.7 Mid-Infrared Quantum Cascade Lasers for Flow Injection Analysis B.Lendl;J.Frank;R.Schindler;A.Muller;M.Beck;J.Faist https://doi.org/10.1021/ac990833b
  72. Applied Physics Letters v.70 no.20 Distributed feedback quantum cascade lasers J.Faist;C.Gmachl;F.Capasso;C.Sirtori;D.L.Sivco;J.N.Baillargeon;A.L.Hutchinson;A.Y.Cho https://doi.org/10.1063/1.119208
  73. IEEE Photonics Technology Letters v.9 no.8 Complex-coupled quantum cascade distributed-feedback laser C.Gmachl;J.Faist;J.N.Baillargeon;F.Capasso;C.Sirtori;D.L.Sivco;S.N.G.Chu;A.Y.Cho https://doi.org/10.1109/68.605510
  74. Handbook of distributd feedback laser diodes G.Morthier;D.Vankwinkelberge
  75. Applied Physics Letters v.76 no.9 Single-mode tunable, pulsed, and continuous wave quantum-cascade distributed feedback lasers at Λ≌4.6-4.7 mum R.Kohler;C.Gmachl;F.Capasso;A.Tredicucci;D.L.Sivco;S.N.G.Chu;Y.Cho https://doi.org/10.1063/1.125987
  76. IEEE Photonics Technology Letters v.12 no.5 Single-mode tunable quantum cascade lasers in the spectral range of the CO2 laser at λ=9.5-10.5 μm R.Kohler;C.Gmachl;F.Capasso;A.Tredicucci;D.L.Sivco;Y.Cho https://doi.org/10.1109/68.841257
  77. Distributed feedback QC laser - Schematic
  78. Optics Letters v.25 no.4 C.Gmachl;F.Capasso;A.Tredicucci;D.L.Sivco;J.N.Bailargeon;A.L.Hutchinson;A.Y.Cho https://doi.org/10.1364/OL.25.000230
  79. Electronics Letters v.37 no.16 Continuous wave operation of λ∼19 μm surface-plasmon quantum cascade lasers R.Colombelli;A.Tredicucci;C.Gmachl;F.Capasso;D.L.Sivco;A.M.Sargent;A.L.Hutchinson;A.Y.Cho https://doi.org/10.1049/el:20010694
  80. Applied Physics Letters v.76 no.16 Single-mode surface-plasmon laser A.Tredicucci;C.Gmachl;F.Capasso;A.L.Hutchinson;D.L.Sivco;A.Y.Cho https://doi.org/10.1063/1.126183
  81. Applied Physics Letters v.81 no.8 Low-threshold terahertz quantum-cascade lasers M.Rochat;L.Ajili;H.Willenberg:J.Faist;H.Beere;G.Davies;E.Linfield;D.Ritchie https://doi.org/10.1063/1.1498861
  82. Applied Physics Letters v.82 no.19 Far-infrared (Λ&unknown;87 mum) bound-to-continuum quantum-cascade lasers operating up to 90 K G.Scalari;L.Ajili;J.Faist;H.Beere;E.Linfield;D.Ritchie;G.Davies https://doi.org/10.1063/1.1571653
  83. Japanese Journal of Applied Physics v.36 no.8 Feasibility Study on Ultrafast Nonlinear Optical Properties of 1.55-� Intersubband Transition in AlGaN/GaN Quantum Wells N.Suzuki;N.Iizuka https://doi.org/10.1143/JJAP.36.L1006
  84. Japanese Journal of Applied Physics v.38 no.part 2 N.Suzuki;N.Iizuka https://doi.org/10.1143/JJAP.38.L363
  85. Applied Physics Letters v.77 no.3 Intersubband absorption in GaN/AlGaN multiple quantum wells in the wavelength range of Λ Angstrom 1.75-4.2 mum C.Gmachl;H.M.Ng;A.Y.Cho https://doi.org/10.1063/1.126968
  86. Applied Physics Letters v.77 no.5 N.Iizuka;K.Kaneko;N.Suzuki;T.Asano;S.Noda;O.Wada https://doi.org/10.1063/1.127073
  87. Applied Physics Letters v.77 no.23 Intersubband absorption at Λ∼1.55 mum in well- and modulation-doped GaN/AlGaN multiple quantum wells with superlattice barriers C.Gmachl;H.M.Ng;S.N.G.Chu;A.Y.Cho https://doi.org/10.1063/1.1332108
  88. Applied Physics Letters v.81 no.7 Intersubband transition in (GaN)m/(AlN)n superlattices in the wavelength range from 1.08 to 1.61 mum K.Kishino;A.Kikuchi;H.Kanazawa;T.Tachibana https://doi.org/10.1063/1.1500432
  89. Applied Physics Letters v.81 no.7 Comparative study of ultrafast intersubband electron scattering times at ∼1.55 mum wavelength in GaN/AlGaN heterostructures J.D.Heber;C.Gmachl;H.M.Ng;A.Y.Cho https://doi.org/10.1063/1.1500412
  90. Applied Physics Letters v.81 no.10 Near-infrared intersubband absorption in GaN/AlN quantum wells grown by molecular beam epitaxy N.Lizuka;K.Kaneko;N.Suzuki https://doi.org/10.1063/1.1505116
  91. Journal of Applied Physics v.92 no.12 Intersubband absorption at Λ ∼ 1.3 mum in optimized GaN/AlGaN Bragg-confined structures J. Radovanovice;V.Milanovic;D.Indjin;Z.Ikonic https://doi.org/10.1063/1.1522743
  92. physica status solidi (a) v.192 no.1 Observation of Intersubband Transition from the First to the Third Subband (e1–e3) in GaN/AlGaN Quantum Wells K.Hoshino;T.Someya;K.Hirakawa;Y.Arakwa https://doi.org/10.1002/1521-396X(200207)192:1<27::AID-PSSA27>3.0.CO;2-R
  93. physica status solidi (a) v.192 no.1 Intersubband Absorption at λ ∼ 1.2–1.6 μm in GaN/AlN Multiple Quantum Wells Grown by rf-Plasma Molecular Beam Epitaxy K.Kishino;A.Kikuchi;H.Kanazawa;T.Tachibana https://doi.org/10.1002/1521-396X(200207)192:1<124::AID-PSSA124>3.0.CO;2-3
  94. Applied Optics v.39 no.24 A.A.Kosterev;R.F.Curl;F.K.Tittel;C.Gmachl;F.Capasso;D.L.Sivco;J.N.Baillargeon;A.L.Hutchinson;A.Y.Cho https://doi.org/10.1364/AO.39.004425
  95. Applied Optics v.39 no.1 Trace-gas detection in ambient air with a thermoelectrically cooled, pulsed quantum-cascade distributed feedback laser. A.A.Kosterev;F.K.Tittel;C.Gmachl;F.Capasso;D.L.Sivco;J.N.Baillargeon;A.L.Hutchinson;A.Y.Cho https://doi.org/10.1364/AO.39.006866
  96. IEEE Journal of Quantum Electronics v.38 no.6 Chemical sensors based on quantum cascade lasers A.A.Kosterev;F.K.Tittel https://doi.org/10.1109/JQE.2002.1005408
  97. Applied Optics v.41 no.6 A.A.Kosterev(et al.) https://doi.org/10.1364/AO.41.001169
  98. Applied Optics v.41 no.3 A.A.Kosterev(et al.) https://doi.org/10.1364/AO.41.000573
  99. Electronics Letters v.37 no.2 Reduced-complexity decoding algorithm for low-density parity-check codes R.Martini(et al.) https://doi.org/10.1049/el:20010077
  100. Electronics Letters v.37 no.12 Free-space optical data link using Peltier-cooled quantum cascade laser S.Blaser;D.Hofstetter;M.Beck;J.Faist https://doi.org/10.1049/el:20010504
  101. Applied Physics Letters v.79 no.5 Quantum cascade lasers with a heterogeneous cascade: Two-wavelength operation C.Gmachl;D.L.Sivco;J.N.Baillargeon;A.L.Hutchinson;F.Capasso;A.Y.Cho https://doi.org/10.1063/1.1383806
  102. Applied Physics Letters v.80 no.22 Mid-infrared (Λ≅7.4 mum) quantum cascade laser amplifier for high power single-mode emission and improved beam quality M.Troccoli;C.Gmachl;F.Capasso;D.L.Sivco;A.Y.Cho https://doi.org/10.1063/1.1479453
  103. IEEE Journal of Quantum Electronics v.38 no.6 Photonic-crystal distributed-feedback quantum cascade lasers I.Vurgaftman;J.R.Meyer https://doi.org/10.1109/JQE.2002.1005409