Characteristics of Alcohol Insoluble Residue Extracted from Ulmus davidiana

Choi, Yun-Kyung;Lee, Chang-Hyun;Song, Geun-Seoup;Kim, Young-Soo

  • 발행 : 20041000

초록

Physichochemical properties and in vitro physiological activities of alcohol insoluble residues (AIRs) from stem and root barks of Ulmus davidiana var. japonica Nakai were investigated. Stem bark AIR contained higher amount of insoluble dietary fiber (IDF) and total dietary fiber (TDF) and lower one of soluble dietary fiber (SDF) than those of root bark AIR Bulk density, water-holding capacity (WHC), and oil-holding capacity (OHC) of root bark AIR were greater than those of stem bark AIR. Root bark AIR had much higher glucose and bile acid retardation effects than those of stem bark AIR Stem and root bark AIRs showed growth-inhibiting activity against E. coli. Stem bark AIR showed moderate growth-inhibiting activity on B. bifidum and B. longum, whereas root bark AIR produced moderate growth-inhibiting activity on growth of B. bifidum only.

키워드

참고문헌

  1. Korean Folk Medicine, Monographs Series No.3 Lee, S.J.
  2. Toxicology Letters v.146 no.2 Glycoprotein isolated from Nakai inhibits TPA-induced apoptosis through nuclear factor-kappa B NIH/T3 cells Lee, S.J.;Heo, K.S.;Oh, P.S.;Lim, K.;Lim, K.T. https://doi.org/10.1016/j.toxlet.2003.10.005
  3. Journal of Ethnopharmacology v.62 no.2 Inhibition of nitric oxide synthesis by butanol fraction of the methanol extract of Ulmus davidiana in murine macrophages Jun, C.D.;Pae, H.O,;Kim, Y.C.;Jeong, S.J.;Yoo, J.C.;Lee, E.J.;Choi, B.M.;Chae, S.W.;Park, R.K.;Chung, H.T. https://doi.org/10.1016/S0378-8741(98)00063-4
  4. Phytochemistry v.43 no.2 Sesquiterpene Onaphthoquinons from the root bark of Ulmus davidiana Kim, J.P.;Kim, W.G.;Koshino, H.;Jung, J.;Yoo, I.D. https://doi.org/10.1016/0031-9422(96)00279-8
  5. J. Biochem. Mol. Biol. v.34 Inhibitory effects of the ethanol extract of Ulmus davidiana on apoptosis induced by glucose-glucose oxidase and cytokine production in cultured mouse primary immune cells Lee, J.C.;Lim, K.T.
  6. J. Korean Food Sci. Nutr. v.28 Antimicrobial activity of Ulmi cortex extracts Park, J.S.;Shim, C.J.;Jung, J.H;.Lee, G.H.;Sung, C.K.;Oh, M.J.
  7. Journal of the Science of Food and Agriculture v.70 no.2 Plant cell walls as dietary fiber: Range, structure, processing and function McDougall, G.J.;Morrison, I.M.;Stewart, D.;Hillman, J.R. https://doi.org/10.1002/(SICI)1097-0010(199602)70:2<133::AID-JSFA495>3.0.CO;2-4
  8. Food Technol. v.41 Soluble vs insoluble fiber different physiological rex responses Schneeman, B.O.
  9. Am. J. Gastroenterol. v.81 Dietary fiber: diabetes and obesity Anderson, J.W.;Bryant, C.A.
  10. Korean J. Nutr. v.31 Retarding effect of dietary fibers isolated from persimon peels and jujubes on in vitro glucose, bile acid and cadmium transport Lee, H.J.;Kim, M.K.
  11. Food Proc. v.48 Dietary fiber research addresses intake sources, health benefits Andres, C.
  12. Food Sci. Biotechnol. v.12 Changes in dietary fiber content of flesh and peel in three cultivars of Asian pears during growth Zhang, X.;Na, C.S.;Kim, J.S.;Lee, F.Z.;Eun, J.B.
  13. Food Sci. Biotechnol. v.13 Effect of dietary fiber of some beans on serum cholesterol concentration in rats Han, K.H.;Ohashi, T.;Kojima, M.;Fukushima, M.
  14. Food Sci. Biotechnol. v.13 Extraction of pectic polysaccharides from extruded ginseng fiber Na, K.;Yun, J.M.;Choi, M.J.;Hwang, J.K.
  15. J. Assoc. Off. Anal. Chem. v.68 Determination of total dietary fiber in foods, food products, and total diets: Interlaboratory study Prosky, L.;Asp, N.G.;Furda, I.;De Vries, J.W.;Schweizer, T.F.;Harland, B.F.
  16. Cereal Chem. v.65 Chemical, physical and baking properties of apple fiber compared with wheat and oat bran Chen, H.;Rubenthaler, G.L.;Leung, H.K.;Baranowski, J.D.
  17. Am. J. Clin. Nutr. v.52 Dietary fiber: in vitro methods that anticipate nutrition and metabolic activity in humans Adiotomre, J.;Eastwood, M.;Edwards, C.;Brydon, W.G. https://doi.org/10.1093/ajcn/52.1.128
  18. J. Lipid Res. v.7 Bile acids in the rat: studies in experimental occlusion of the bile duct Boyd, G.;Eastwood, M.;Maclean, N.
  19. Food Sci. Biotechnol. v.9 Growth responses of grain extracts on human intestinal bacteria Lee, H.S.;Kim, M.K.
  20. SAS User's Guide SAS Institute, Inc.
  21. Korean J. Nutr. v.29 Determination of dietary fiber content of some vegetables, mushrooms, fruits and seaweeds Lee, K.S.;Lee, S.R.
  22. Lebensmittel-Wissenschaft und-Technologie v.33 no.2 Dietary fiber and cell wall polysaccharides in the fruits of Japanese quince Thomas, M.;Crepeau, M.J.;Rumpunen, K.;Thibault, J.F. https://doi.org/10.1006/fstl.1999.0628
  23. Food Chemistry v.65 no.2 Characterisation of peach dietary fiber concentrate as a food ingredient Grigelmo-Miguel, N.;Gorinstein, S.;Martin-Belloso, O. https://doi.org/10.1016/S0308-8146(98)00190-3
  24. Journal of Cereal Science v.11 no.1 Chemical and physiccochemical changes of rice during storage at different temperatures Chrastil, J. https://doi.org/10.1016/S0733-5210(09)80182-3
  25. Lebensmittel-Wissenschaft und-Technologie v.37 no.2 Composition of the characteristics, functional properties, and in vitro hypoglycemic effects of various carrot insoluble fiber-rich fractions Chau, C.F.;Chen, C.H.;Lee, M.H. https://doi.org/10.1016/j.lwt.2003.08.001
  26. Food Res. Int. v.31 Characterization of dietary fiber from orange juice extraction Grigelmo-Miguel, N.;Martin-Belloso, O.
  27. Journal of Food Science v.52 no.6 Comparative effects of particle size reduction on physical structure and water binding properties of several plant fibers Cadden, A.M. https://doi.org/10.1111/j.1365-2621.1987.tb05886.x
  28. Food Prod. Design v.2 Fiber: From frustation to functionality Kuntz, L.A.
  29. Food Sci. Biotechnol. v.8 Effect of heat treatments on physicochemical properties of defatted rice bran Kim, Y.S.
  30. Lebensmittel-Wissenschaft und-Technologie v.37 no.3 Insoluble fiber-rich fractions derived from Averrlwa carambola: hypoglycemic effects determined by in vitro methods Chau, C.F.;Chen, C.H.;Lin, C.Y. https://doi.org/10.1016/j.lwt.2003.10.001
  31. Korean J. Nutr. v.29 Retarding effect of dietary fibers on the glucose and bile acid movement across a dialysis membrane in vitro Lee, K.S.;Lee, S.R.
  32. Am. J. Clin. Nutr. v.31 Binding of bile acids by dietary fiber Kern, F.;Birkner, H.J.;Ostrower, V.S. https://doi.org/10.1093/ajcn/31.10.S175
  33. J. Nutr. v.119 Interaction of bile aicds, phospholipids, cholesterol and triglyceride with dietary fibers in the small intestine of rats Ebihara, K.;Schneeman, B.O. https://doi.org/10.1093/jn/119.8.1100
  34. J. Nutr. v.104 Binding of bile salts in vitro by non-nutritive fiber Kritchevsky, D.;Story, J.A. https://doi.org/10.1093/jn/104.4.458
  35. Journal of Agricultural and Food Chemistry v.41 no.12 In vitro binding of bile acids by extruded potato peels Camire, M.E.;Zhao, J.;Violette, D.A. https://doi.org/10.1021/jf00036a033