Characterization of Al Thin Films Prepared by Sputtering

Sputtering법에 의하여 형성된 Al 박막의 특성 평가

Moon, Myung-Jun;Lee, Jung-Mu;Jeon, Jong-Tak;Jung, Bong-Kue;Lee, Gun-Dae
문명준;이종무;전종탁;정봉규;이근대

  • Published : 20040600

Abstract

Reflective Al thin films were prepared by sputtering. The effects of deposition conditions and substrates on the reflectivity of Al thin films were investigated. The reflectivity of Al thin film increased with decreasing deposition pressure. Within the range of $100{\sim}400\;W$ of RF power, the highest reflectivity was obtained at 200 W. The Al thin film deposited on the glass substrate showed higher reflectivity than that on polycarbonate; this may be due to the lower thermal expansion coefficient of glass. It was found from the observation of Al film using atomic force microscopy that the reflectivity of Al thin film increased with increasing grain size and decreasing surface roughness. From the result of X-ray diffraction measurements, it was shown that the peak intensity of (111) phase in Al film increased with lowering chamber pressure, leading to increased reflectivity.

Sputtering법을 이용하여 반사형 Al 박막을 제조하였다. 이 때 증착조건 및 사용된 기판이 Al의 반사율에 미치는 영향을 조사하였다. Al의 반사율은 증착압력이 낮을수록 증가하였다. 그리고 증착파워 $100{\sim}400\;W$ 범위에서는 200 W 일 때가 가장 큰 반사율을 나타내었다. 유리 기판의 경우가 polycarbonate 기판에 비해 우수한 반사율을 보였으며, 이는 유리의 낮은 열팽창계수에 기인한 것으로 생각된다. AFM을 이용한 Al박막의 관찰로부터 결정립의 크기가 크고, 표면 거칠기가 낮을수록 반사율이 높은 것으로 알 수 있었다. X-선 회절분석 결과, 가스압력이 낮을수록 Al의 (111) 면의 피크강도가 증가함을 볼 수 있었고, 이 경우 반사율이 증가함을 알 수 있었다.

Keywords

References

  1. 전기전자재료 v.12 no.2 반사형 LCD의 기술현황 서대식
  2. Surf. Coat. Technol. v.111 Better aluminium mirrors by integrating plasma pretreatment, sputtering, and plasma polymerization for large-scale car headlight production Grunwald, H.;Adam, R. https://doi.org/10.1016/S0257-8972(98)00718-X
  3. Vaccum v.42 The specular reflectivity of dc magnetron sputtered Al-1%-Si films Wilson, R.J.;Weiss, B.L. https://doi.org/10.1016/0042-207X(91)90005-4
  4. Vaccum v.34 Metallization of plastics by magnetron sputtering for application of membrane switching Nyaiesh, A.R.;Watson, J.D.;Morgon, J. https://doi.org/10.1016/0042-207X(84)90371-3
  5. J. Vac. Sci. Technol. v.A17 Microstructure modification of silver films deposited by ionized magnetron sputter deposition Chiu, K.F.;Blamire, M.G.;Barber, Z.H.
  6. 속경화성 피복조성물과 이를 도포한 자동차 헤드램프 반사경 성재갑
  7. J. Vac. Sci. Technol. v.A17 Ni-Cr passivation of very thin Ag films for low-emissivity multilayer coatings Martin-palma, R.J.;Matinez-Duart, J.M.
  8. PVD Ion Plating법에 의한 Ag 박막의 형성과 특성 평가 이경황
  9. Thin Solid Films v.375 Preparation and characterization of nanostructured silver thin films deposited by radio frequency magnetron sputtering Xiong, Y.;Wu, H.;Guo, Y.;Sun, Y.;Yang, D.;Da, D. https://doi.org/10.1016/S0040-6090(00)01253-0
  10. Thin Solid Films v.396 Structural and optical properties of silver thin films deposited by RF magnetron sputtering Rizzo, A.;Tagliente, M.A.;Alvisi, M.;Scaglione, S. https://doi.org/10.1016/S0040-6090(01)01242-1
  11. Thin Solid Films v.359 Ion-assisted deposition of silver thin films Lee, C.C.;Lee, T.Y.;Jen, Y.J. https://doi.org/10.1016/S0040-6090(99)00736-1
  12. Thin Solid Films v.193/194 Argon incorporation effects on the conductivity of metal layers Stambouli, V.;Burat, O.;Bouchier, D. https://doi.org/10.1016/S0040-6090(05)80026-4
  13. J. Vac. Sci. Technol. v.A18 Optimization of the reflectivity of magnetron sputter deposited silver films Vergohl, M.;Malkomes, N.;Szyszka, B.;Neumann, F.;Matthee, T.
  14. Phys. Stat. Sol. v.40 Variation of laser mirror metal microstructure and its effect on reflectivity at 10.6 ${\mu}m$ Szilva, W.A.;Murr, L.E. https://doi.org/10.1002/pssa.2210400129
  15. Thin Solid Films v.171 Stress-related effects in thin films Thornton;Hoffman, D.W. https://doi.org/10.1016/0040-6090(89)90030-8
  16. Thin Solid Films v.286 Surface roughness of alumina films deposited by reactive r.f. sputtering Zhao, Y.;Qian, Y.;Yu, W.;Chen, Z. https://doi.org/10.1016/S0040-6090(95)08514-9
  17. Handbook of Deposition Technologies For Films and Coatings Bunshah, R.F.
  18. Solid State Communications v.104 The influenc of surface grown Ag particle on the optical absorption of $Ag/SiO_2$ nano-compostion film Ba, L.;Zhang, L.;Wang, X. https://doi.org/10.1016/S0038-1098(97)00348-7
  19. J. Sol-Gel Science and Technology v.8 Sol-Gel protection of front surface silver and Aluminum mirrors Morales, A.;Duran, A.
  20. Thin Solid Films v.298 Deposition of indium tin oxide films on polycarbonate substrates by raido-frequency magnetron sputtering Wu, W.F.;Chiou, B.S. https://doi.org/10.1016/S0040-6090(96)09311-X
  21. Thin Solid Films v.241 Silver thin films deposited by magnetron sputtering Marechal, N.;Quesnel, E. https://doi.org/10.1016/0040-6090(94)90391-3
  22. Surf. Coat. Technol. v.135 Low temperature growth of rutile $TiO_2$ films in modified rf magnetron sputtering Okimura, K. https://doi.org/10.1016/S0257-8972(00)00999-3
  23. Industrial Plasma Engineering, Vol. 1 Roth, J.R.
  24. Thin Solid Films v.358 Texture development in silver films deposited by ionised magnetron sputter deposion Chiu, K.F.;Barber, Z.H. https://doi.org/10.1016/S0040-6090(99)00725-7
  25. Thin Solid Films v.130 Development of textures during the growth of silver films condensed in vacuum on glass Gittis, A.;Dobrev, D. https://doi.org/10.1016/0040-6090(85)90364-5
  26. Thin Solid Films v.72 Factors influencing the nucleation of silver on plastic substrates Bishop, C.A.;Howson, R.P.;Ridge, M.I. https://doi.org/10.1016/0040-6090(80)90016-4
  27. Sol. Energy Material Sol. Cells v.53 Silver-based low-emissivity coatings for architectural windows: Optical and structural properties Martin-Palma, R.J.;Vazquez, L.;Martinez-Duart, J.H.;Riera, M. https://doi.org/10.1016/S0927-0248(98)00007-5