Physical Effect on Synthesis of Al(III) Polymeric Inorganic Coagulants for Water Treatment

수처리용 Al(III)계 무기고분자응집제 제조시 물리적 영향

Han, Seung-Woo;Lee, Chul-Woo;Kang, Lim-Seok
한승우;이철우;강임석

  • Published : 2004.10.31

Abstract

This research explored the feasibility of preparing preformed PACl (polyaluminum chloride) as coagulants for water treatment at optimum synthesized condition. The optimum synthesized condition of PACls was that the G value and temperature were $114\;sec^{-1}\;and\;50^{\circ}C$, respectively. The differentiation and quantification of hydrolytic Al species in coagulant were done by spectrophotometric method based on the interaction of Al with Ferron as a complexing agent. In addition, $^{207}Al-NMR$ and FT-IR were used to characterize the nature and structure of the hydrolytic species in the synthesized coagulants. The properties of the synthesized polyaluminum chloride (PACl) showed that the quantities of polymeric Al produced at a value of $r\;(=OH_{added}/Al_T))$ at 2.2 exhibited a maxima at 85% of the total aluminum in solution. The synthesized PACl was stable during storing period indicating the aging effect is negligible.

Al(III)계 무기고분자 응집제(PACl: Polyaluminum chloride) 제조에 있어서 혼합과 온도의 물리적 영향에 따라 제조한 PACl 응집제의 특성을 연구한 결과, 다음과 같은 몇 가지의 결론을 도출할 수 있었다. 염기도에 따라 제조된 PACl 집제의 특성을 연구한 결과, 다음과 같은 몇 가지의 결론을 도출할 수 있었다. 염기도에 따라 제조된 PACl 응집제의 ferron 분석결과 $r(OH_{added}/Al)$=2.2에서 85% 이상의 가장 많은 polymeric Al(III)종을 함유하고 있는 것으로 나타났다. r=2.2의 PACl에 대한 혼합 및 온도에 따른 제조에 있어서 혼합에 따른 속도경사 값이 $114\;sec^{-1}$과 제조 온도 $50^{\circ}C$의 경우에서 polymeric Al(III)종이 85% 이상으로 가장 많이 함유되어 있는 것으로 나타났다. 그리고 도출된 최적의 제조조건에 따른 PACl 특성 실험에서 ferron 방법 및 $^{27}Al-NMR$ 분석결과 polymeric Al(III)종의 함유정도는 서로 비슷한 결과를 보였으며, FT-IR의 분석결과 연속적인 Al-OH의 결합이 이루어지는 것으로 나타났다. 그리고 제조된 Al(III)계 무기고분자의 사용에 있어서 보관기간에 따른 Al(III)종 변화를 관찰한 결과, 보관기간 동안의 Al(III)종 변화에 따른 영향은 없는 것으로 나타났다.

Keywords

References

  1. Korean Journal of Chemical Engineering v.18 no.6 Synthesis and Characterization of Polymeric Inorganic Coagulants for Water Treatment Kang, L.S.;Han, S.W.;Jung, C.W. https://doi.org/10.1007/BF02705627
  2. Production and Application of Polymeric Inorganic Coagulants for Water Treatment Han, S.W.
  3. Water Research v.19 no.1 Study of Polymeric Aluminum(III) Hydroxide Solutions for Application in Wastewater Treatment. Properties of the Polymer and Optimal Conditions of Preparation Parthasarathy, N.;Buffle, J. https://doi.org/10.1016/0043-1354(85)90319-7
  4. Wster Res. v.24 no.8 Surface Ionization of Polynuclear Species in Al(III) hYDROLYSIS-I. Titration Results Letterman, R.D.;Asolekar, S.
  5. Proc. AWWA Annual Conf. Effect of Micromixing on Product Selectivity in Rapid Mix Clark, M.M.;David, R.;Wiesner, M.R.
  6. Jour. Envir. Engrg. Div., ASCE v.114 no.2 Chemistry and Fate of Al(III) in Treated Drinking Water Driscoll, C.T.;Letterman, R.D. https://doi.org/10.1061/(ASCE)0733-9372(1988)114:1(21)
  7. Am. Water Works Assoc. Seminar Proceedings : Influence of Coagulation on the Selection, Operation, and Performance of Water Treatment Facilities Chemistry of Coagulants Dempsey, B.A.
  8. Aluminum Hydrolysis Reaction and Products in Mildly Acidic Aqueous Systems, in Chemical Modeling of Aqueous Systems II;American Chemistry Society Symposium Series 416 Hem, J.D.;Roberson, C.E.;Melchior, D.C.(Ed.);Bassett, R.L.(Ed.)
  9. Journal of Colloid and Interface Science v.51 no.3 Hydrolysis-Precipitation Studies of Aluminum(III) Solutions. I. Titration of Acidified Aluminum Nitrate Solutions Vermeulen, A.C.;de Bruyn, P.L. https://doi.org/10.1016/0021-9797(75)90142-3
  10. Relation Among Equilibrium and Nonequilibrium Aqueous Species of Aluminum Hydroxy Complexes;Nonequilibrium Systems in Natural Water Chemistry, A.C.S. Advances in Chemistry Series No. 106 Smith, R.M.;Gould, R.F.(ed.)
  11. Soil Sci. Soc. Am. J. v.51 Characterization of Hydroxy-Aluminum Solutions Bersillon, J.L.;Hsu, P.H.;Fiessinger. F. https://doi.org/10.2136/sssaj1987.03615995005100030046x
  12. Environmental Science & Technology v.26 no.5 Identification and Quantification of the '$Al_{13}$' Tridecameric Polymeric Polycation using Ferron David, R.P. https://doi.org/10.1021/es00029a006
  13. The Journal of Physical Chemistry v.84 no.22 Studies of Hydrolyzed Aluminum Chloride Solutions. I. Nature of Aluminum Species and Composition of Aqueous Solutions Bottero, J.Y.;Cases, J.M.;Fiessinger, F.;Poirer, J.E. https://doi.org/10.1021/j100459a021
  14. J. Mag. Reson. v.32 New Al NMR Studies of the Hydrolysis of Aluminum Ions Akitt, J.W.;Farthing, A.
  15. J. Chem. Soc. Dalton Trans. Aluminum-27 Nuclear Magnetic Resonance Studies of Sulphato-Complexes of the Hexa-Aquo Aluminum Ion Akitt, J.W.;Greenwood, N.N.;Khandelwal, B.L.
  16. HWAHAK KONGHAK v.32 no.5 Manufacture of PAC (polyaluminum chloride) by Partial Decomposition of Aluminum Chloride Hexahydrate Park, K.Y.;Lee, K.C.;Kim, J.K.