Enhancing Thermal Conductivity of Nanofluids Containing Carbon Nanotubes

탄소 나노튜브를 함유한 나노유체의 열전도도 증가

Cho, Tae-Hyun;Park, Sang-Do;Lee, Young-Seak;Baek, Il-Hyun
조태현;박상도;이영석;백일현

  • Published : 2004.10.31

Abstract

Nanofluids, the suspension of carbon nanotubes (CNTs) in ethylene glycol which can be used as heat transfer fluid having high thermal conductivity, were prepared by dispersion of CNTs in ethylene glycol using direct and acid treatment dispersion methods. Direct dispersion method was achieved by sonication of ethylene glycol having CNTs (SCNT) or by sonication after dissolution of PAA-co-AA (polyacrylamide-co-acrylicacid) stabilizer into above ethylene glycol (D-CNT). Acid treatment dispersion method was done by sonication of ethylene glycol involving CNTs treated the surface with acids (A-CNT). The thermal conductivities of nanofluids were measured by hot wire method. The thermal conductivities of S-CNT, D-CNT, and A-CNT containing 1 vol% of CNTs increased up to 16, 14, and 15%, compared to that of pure ethylene glycol. The thermal conductivities of nanofluids prepared by S-CNT increased up to 16, 19, and 23% with increasing CNTs concentrations of 1, 2, and 3 vol%, respectively.

에틸렌글리콜에 탄소 나노튜브를 부유시켜 높은 열전도도를 가진 열전달유체로 사용할 수 있는 나노유체를 직접 및 산처리 분산방법을 이용하여 제조하였다. 직접 분산방법은 에틸렌글리콜에 탄소 나노튜브를 넣은 후 초음파로 처리하여 탄소나노튜브를 분산시키는 방법(S-CNT), 또는 에틸렌글리콜에 분산 안정제인 PAA-co-AA(polyacrylamide-co-acrylicacid)를 용해시킨 후 탄소 나노튜브를 넣고 초음파로 처리하여 탄소 나노튜브를 분산시키는 방법(D-CNT)으로 하였다. 산처리 분산방법은 에틸렌글리콜에 산을 이용하여 표면 처리한 탄소 나노튜브를 넣은 후 초음파로 처리하여 탄소 나노튜브를 분산하였다(A-CNT). 나노유체의 열전도도는 hot wire method에 의해 측정하였다. 1 vol% S-CNT, D-CNT 및 A-CNT의 열전도도는 순수 에틸렌글리콜의 열전도도와 비교할 때 16, 14, 15% 향상하였다. S-CNT을 이용하여 만든 나노유체에 나노튜브 농도가 1, 2, 3 vol% 증가함에 따라 순수한 에틸렌글리콜에 비해 열전도도는 16, 19, 23% 증가하였다.

Keywords

References

  1. Carbon Nanotubes and Related Structures Harris, P.J.F.
  2. FED v.23 no.1 Enhancing Thermal Conductivity of Fluids with Nanoparticles Choi, S.S.
  3. International Journal of Heat and Fluid Flow v.21 no.1 Heat Transfer Enhancement of Nanofluids Xuan, Y.;Li, Q. https://doi.org/10.1016/S0142-727X(99)00067-3
  4. App. Phys. Lett. v.78 no.2 Anomalously Increased Effective Thermal Conductivities of Ehthylene Glycon-based Nanofluids Containing Copper Nanoparticles Eastman, J.A.;Choi, S.U.S.;Li, S.;Yu, W.;Thompson, L.J. https://doi.org/10.1063/1.1341218
  5. Journal of Heat Transfer v.121 no.2 Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles Lee, S.;Choi, S.U.S.;Li, S.;Eastman, J.A. https://doi.org/10.1115/1.2825978
  6. International Journal of Heat and Mass Transfer v.46 no.5 Pool Boiling Characteristics of Nano-Fluids Das, S.K.;Putra, N.;Roetzel, W. https://doi.org/10.1016/S0017-9310(02)00348-4
  7. Journal of Applied Physics v.94 no.8 Nanofluids Containing Multiwalled Carbon Nanotubes and their Enhanced Thermal Conductivities Xie, H.;Lee, H.;Youn, W.;Choi, M. https://doi.org/10.1063/1.1613374
  8. Physica B v.323 Chemical Treatment and Modification of Multi-walled Carbon Nanotubes Saito, T.;Matsushige, K.;Tanaka, K.
  9. Carbon v.36 no.11 Dispersion and Packing of Carbon Nanotubes Shaffer, M.S.P.;Fan, X.;Windle, A.H. https://doi.org/10.1016/S0008-6223(98)00130-4
  10. Journal of Colloid and Interface Science v.260 no.1 Production of Aqueous Colloidal Dispersion of Carbon Nanotubes Jiang, L.;Gao, L.;Sun, J. https://doi.org/10.1016/S0021-9797(02)00176-5
  11. Polymer v.43 no.26 A Rheological Study of Concentrated Aqueous Nanotube Dispersions Kinloch, I.A.;Roberts, S.A.;Windle, A.H. https://doi.org/10.1016/S0032-3861(02)00664-X
  12. Journal of Physics E Scientific Instruments v.17 no.6 Temperature Sensor Characteristics and Measurement System Design Bentley, J.P. https://doi.org/10.1088/0022-3735/17/6/002
  13. Thermal Conductivity of Carbon Nanotubes