Serum adiponectin concentration according to visceral fat amount and its relationship of metabolic risk factors in premenopausal obese women

폐경 전 비만여성에서 내장지방량에 따른 혈중 아디포넥틴 농도와 대사증후군 관련인자와의 상관관계

Kim, Sung-Jae;Park, Keun-Gyu;Kim, Hee-Kyoung;Kim, Mi-Kyung;Lee, Sang-Won;Hwang, Jae-Seok;Han, Seong-Wook;Hur, Seung-Ho;Lee, In-Kyu
김성재;박근규;김희경;김미경;이상원;황재석;한성욱;허승호;이인규

  • Published : 20040000

Abstract

Background : Adiponectin is adipose specific protein, which we considered to have metabolic and endocrine function in metabolic syndrome including obesity and insulin resistance. We measured serum adiponectin concentrations and compared them with body fat distribution and metabolic risk factors. Methods : 112 premenopausal obese women were participated in this study. We measured plasma adiponectin concentration and metabolic risk factors such as fasting glucose and insulin, triglyceride, systolic blood pressure (SBP) and diastolic blood pressure (DBP). Subcutaneous adipose tissue area (SAT) and visceral adipose tissue area (VAT) were determined by computed tomography. Body mass index (BMI), waist to hip ratio (WHR) and homeostasis model assessment (HOMA-IR) were calculated. Results : Serum adiponectin concentration was inversely correlated with fasting insulin level, HOMA-IR, triglyceride, SBP, DBP, WHR, BMI and VAT, whereas HDL-cholesterol was positively correlated (all p values<0.05). VAT, SBP, and HDL-cholesterol level were independent variables of serum adiponectin concentrations. Conclusion : The present study demonstrates that decreased plasma level of adiponectin is significantly associated with metabolic risk factors including body fat distribution; serum adiponectin level is determined by VAT, whereas SAT has no relation with serum adiponectin level.

목적 : 아디포넥틴은 지방세포 특이 단백질이며, 비만과 인슐린저항성을 특징으로 하는 대사증후군의 발생에있어 중요한 대사 및 내분비기능을 하는 것으로 알려지고 있다. 이에 저자들은 폐경 전 비만여성에서 혈청 아디포넥틴 농도를 측정하고 체지방의 분포와 대사증후군 위험요소들 사이의 연고나성을 비교 검토하였다. 방법 : 총 112명의 폐경 전 비만여성을 대상으로 대사증후군 위험인자를 측정하고, 컴퓨터 단층촬영으로 피하지방량과 내장지방량을 측정하였다. 혈청 아디포넥틴 농도는 방사면역법으로 측정하였으며 이를 대사증후군 위험인자와의 상관관계를 비교 분석하였다. 결과 : 혈청 아디포넥틴 농도는 공복 인슐린, HOMA-IR,수축기 및 이완기 혈압, 허리 엉덩이 둘레, 체질량지수 및 내장지방량과 유의한 음의 상관관계를 보였고, HDL-콜레스테롤과는 양의 상관관계를 보였다(p value<0.05). 다중회귀분석상 내장지방량, 수축기 혈압 그리고 고밀도 콜레스테롤이 혈청 아디포넥틴 농도를 결정하는 독립변수로 나타났다. 결론 : 본 연구를 통해 폐경 전 비만여성에서 감소된 혈청 아디포넥틴 농도는 대사증후군 관련인자와 밀접한 관련이 있고, 내장지방의 증가에 따른 혈중 아디포넥틴의 감소는 대사증후군의 위험인자와 밀접한 관련이 있음을 알 수 있었다.

Keywords

References

  1. Stevens J, Keil JE, Rust PF, Tyroler HA, Davis CE, Gazes PC. Body mass index and body girths as predictors of mortality in black and white women. Arch Intern Med 152:1257-1262, 1992. https://doi.org/10.1001/archinte.152.6.1257
  2. Stevens J, Plankey MW, Williamson DF, Thun MJ, Rust PF, Palesch Y, O'Neil PM. The body mass index-mortality relationship in white and African American women. Obes Res 6:268-277, 1998. https://doi.org/10.1002/j.1550-8528.1998.tb00349.x
  3. Nakamura T, Tokunaga K, Shimomura I, Nishida M, Yoshida S, Kotani K, Islam AH, Keno Y, Kobatake T, Nagai Y. Contribution of visceral fat accumulation to the development of coronary artery disease in nonobese men. Atherosclerosis 107:239-246, 1994. https://doi.org/10.1016/0021-9150(94)90025-6
  4. Hauner H. Insulin resistance and the metabolic syndrome: a challenge of the new millennium. Eur J Clin Nutr 56:S25-S29, 2002.
  5. Lopez-Candales A. Metabolic syndrome X: a comprehensive review of the pathophysiology and recommended therapy. J Med 32:283-300, 2001.
  6. Matsuzawa Y, Funahahi T, Nakamura T. Molecular mechanism of metabolic syndrome X: contribution of adipocytokines adipocyte-derived bioactive substances. Ann N Y Acad Sci 892:146-154, 1999. https://doi.org/10.1111/j.1749-6632.1999.tb07793.x
  7. Funahashi T, Nakamura T, Shimomura I, Maeda K, Kuriyama H, Takahashi M, Arita Y, Kihara S, Matsuzawa Y. Role of adipocytokines on the pathogenesis of atherosclerosis in visceral obesity. Intern Med 38:202-206, 1999. https://doi.org/10.2169/internalmedicine.38.202
  8. Ozata M, Ozdemir IC, Lincinio J. Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptinmediated defects. J Clin Endocrinol Metab 84:3686-3695, 1999. https://doi.org/10.1210/jc.84.10.3686
  9. Simomura I, Funahashi T, Takahashi M, Maeda K, Kotani K, Nakamura T, Yamashita S, Miura M, Fukuda Y, Takemura K, Tokunaga K, Matsuzawa Y. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nat Med 2:800-803, 1996. https://doi.org/10.1038/nm0796-800
  10. Saltiel AR. You are what you secrete. Nat Med 7:887-888, 2001. https://doi.org/10.1038/90911
  11. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama- Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941-946, 2001. https://doi.org/10.1038/90984
  12. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 100:2473-2476, 1999. https://doi.org/10.1161/01.CIR.100.25.2473
  13. Okamoto Y, Kihara S, Ouchi N, Nishida M, Arita Y, Kumada M, Ohashi K, Sakai N, Shimomura I, Kobayashi H, Terasaka N, Inaba T, Funahashi T, Matsuzawa Y. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 106:2767-2770, 2002. https://doi.org/10.1161/01.CIR.0000042707.50032.19
  14. Snehalatha C, Mukesh B, Simon M, Viswanathan V, Haffner SM, Ramachandran A. Plasma adiponectin is an independent predictor of type 2 diabetes in Asian indians. Diabetes Care 26:3226-3229, 2003. https://doi.org/10.2337/diacare.26.12.3226
  15. Yatagai T, Nagasaka S, Taniguchi A, Fukushima M, Nakamura T, Kuroe A, Nakai Y, Ishibashi S. Hypoadiponectinemia is associated with visceral fat accumulation and insulin resistance in Japanese men with type 2 diabetes mellitus. Metabolism 52:1274-1278, 2003. https://doi.org/10.1016/S0026-0495(03)00195-1
  16. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412-419, 1985. https://doi.org/10.1007/BF00280883
  17. Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun 221:286-289, 1996. https://doi.org/10.1006/bbrc.1996.0587
  18. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270:26746- 26749, 1995. https://doi.org/10.1074/jbc.270.45.26746
  19. Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 271:10697-10703, 1996. https://doi.org/10.1074/jbc.271.18.10697
  20. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophy Res Commun 257:79-83, 1999. https://doi.org/10.1006/bbrc.1999.0255
  21. Motoshima H, Wu X, Sinha MK, Hardy VE, Rosato EL, Barbot DJ, Rosato FE, Goldstein BJ. Differential regulation of adiponectin secretion from cultured human omental and subcutaneous adipocytes: effects of insulin and rosiglitazone. J Clin Endocrinol Metab 87:5662-5667, 2002. https://doi.org/10.1210/jc.2002-020635
  22. Jazet IM, Pijl H, Meinders AE. Adipose tissue as an endocrine organ: impact on insulin resistance. Neth J Med 61:194-212, 2003.
  23. Kern PA, di Gregorio GB, Lu T, Rassouli N, Ranganathan G. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes 52:1779-1785, 2003. https://doi.org/10.2337/diabetes.52.7.1779
  24. Hirose H, Kawai T, Yamamoto Y, Taniyama M, Tomita M, Matsubara K, Okazaki Y, Ishii T, Oguma Y, Takei I, Saruta T. Effects of pioglitazone on metabolic parameters, body fat distribution, and serum adiponectin levels in Japanese male patients with type 2 diabetes. Metabolism 51:314-317, 2002. https://doi.org/10.1053/meta.2002.30506
  25. Yang WS, Jeng CY, Wu TJ, Tanaka S, Funahashi T, Matsuzawa Y, Wang JP, Chen CL, Tai TY, Chuang LM. Synthetic peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients. Diabtes Care 25:376-380, 2002. https://doi.org/10.2337/diacare.25.2.376
  26. Iwaki M, Matsuda M, Maeda N, Funhashi T, Matsuzawa Y, Makishima M, Shimomura I. Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 52:1655-1663, 2003. https://doi.org/10.2337/diabetes.52.7.1655
  27. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program expert panel on detection, evaluation, and treatment of high blood cholesterol in adults JAMA 285:2486-2497, 2001.
  28. Bjorntorp P. Abdominal obestiy and the development of noninsulin dependent diabetes mellitus. Diabetes Metab Rev 4:615-622, 1988. https://doi.org/10.1002/dmr.5610040607
  29. Grundy SM, Hypertriglycidemia, insulin resistence, and the metabolic syndrome. Am J Cardiol 83:25F-29F, 1999.
  30. Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, Chen CL, Tai TY, Chuang LM. Plasma adiponectin levels in overweight and obese Asians. Obes Res 10:1104-1110, 2002. https://doi.org/10.1038/oby.2002.150
  31. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 20:1595-1599, 2000.
  32. Matsubara M, Maruoka S, Katayose S. Decreased plasma adiponectin concentrations in women with dyslipidemia. J Clin Endocrinol Metab 87:2764-2769, 2002. https://doi.org/10.1210/jc.87.6.2764
  33. Adamczak M, Wiecek A, Funahashi T, Chudek J, Kokot F, Matsuzawa Y. Decreased plasma adioponectin concentration in patients with essential hypertension. Am J Hypertens 16:72-75, 2003. https://doi.org/10.1016/S0895-7061(02)03197-7
  34. Huang KC, Chen CL, Chuang LM, Ho SR, Tai TY, Yang WS. Plasma adiponectin levels and blood pressures in nondiabetic adolescent females. J Clin Endocrinol Metab 88:4130-4134, 2003. https://doi.org/10.1210/jc.2003-030158
  35. Kazumi T, Kawaguchi A, Sakai K, Hirano T, Yoshino G. Young men with high-normal blood pressure have lower serum adiponectin, smaller LDL size, and higher elevated heart rate than those with optimal blood pressure. Diabetes Care 25:971-976, 2002. https://doi.org/10.2337/diacare.25.6.971
  36. Mallamaci F, Zoccali C, Cuzzola F, Tripepi G, Cutrupi S, Parlongo S, Tanaka S, Ouchi N, Kihara S, Funahashi T, Matsuzawa Y. Adiponectin in essential hypertension. J Nephrol 15:507-511, 2002.
  37. 김미진, 이연, 이병준, 윤재호, 신상열, 신영구, 정춘희. 제2형 당뇨병 환자에서 혈중 adiponectin과 인슐린저항성과의 관계. 당뇨병 27:260-271, 2003.
  38. Hotta K, Funahashi T, Bodkin NL, Ortmeyer HK, Arita Y, Hansen BC, Matsuzawa Y. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 50:1126-1133, 2001. https://doi.org/10.2337/diabetes.50.5.1126
  39. Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, Nagaretani H, Matsuda M, Komuro R, Ouchi N, Kuriyama H, Hotta K, Nakamura T, Shimomura I, Matsuzawa Y. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50:2094-2099, 2001. https://doi.org/10.2337/diabetes.50.9.2094
  40. Combs TP, Wagner JA, Berger J, Doebber T, Wang WJ, Zhang BB, Tanen M, Berg AH, O'Rahilly S, Savage DB, Chatterjee K, Weiss S, Larson PJ, Gottesdiener KM, Gertz BJ, Charron MJ, Scherer PE, Moller DE. Induction of adipocyte complement-related protein of 30 kilodaltons by PPARgamma agonists: a potential mechanism of insulin sensitization. Endocrinology 143:998-1007, 2002. https://doi.org/10.1210/en.143.3.998
  41. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86:1930-1935, 2001. https://doi.org/10.1210/jc.86.5.1930