DOI QR코드

DOI QR Code

Structure-based Functional Discovery of Proteins: Structural Proteomics

  • Jung, Jin-Won (Department of Biochemistry and Protein Network Research Center, College of Science, Yonsei University) ;
  • Lee, Weon-Tae (Department of Biochemistry and Protein Network Research Center, College of Science, Yonsei University)
  • Published : 2004.01.31

Abstract

The discovery of biochemical and cellular functions of unannotated gene products begins with a database search of proteins with structure/sequence homologues based on known genes. Very recently, a number of frontier groups in structural biology proposed a new paradigm to predict biological functions of an unknown protein on the basis of its three-dimensional structure on a genomic scale. Structural proteomics (genomics), a research area for structure-based functional discovery, aims to complete the protein-folding universe of all gene products in a cell. It would lead us to a complete understanding of a living organism from protein structure. Two major complementary experimental techniques, X-ray crystallography and NMR spectroscopy, combined with recently developed high throughput methods have played a central role in structural proteomics research; however, an integration of these methodologies together with comparative modeling and electron microscopy would speed up the goal for completing a full dictionary of protein folding space in the near future.

Keywords

References

  1. Abola, E., Kuhn, P., Earnest, T. and Stevens, R. C. (2000) Automation of X-ray crystallography. Nat. Struct. Biol. 7, Suppl, 973-977. https://doi.org/10.1038/80754
  2. Boggon, T. J., Shan, W. S., Santagata, S., Myers, S. C. and Shapiro, L. (1999) Implication of tubby proteins as transcription factors by structure-based functional analysis. Science 286, 2119-2125. https://doi.org/10.1126/science.286.5447.2119
  3. Christendat, D., Yee, A., Dharamsi, A., Kluger, Y., Savchenko1, A., Cort, J. R., Booth, V., Mackereth, C. D., Saridakis, V., Ekiel, I. et al. (2000) Structural proteomics of an archaeon. Nat. Struc. Biol. 7, 903-909. https://doi.org/10.1038/82823
  4. Fernandez, C., Adeishvili, K. and Wuthrich, K. (2001) Transverse relaxation-optimized NMR spectroscopy with the outer membrane protein OmpX in dihexanoyl phosphatidylcholine micelles Proc. Natl. Acad. Sci. USA 98, 2358-2363. https://doi.org/10.1073/pnas.051629298
  5. Fowler, C. A., Tian, F., Al-Hashimi, H. M. and Prestegard, J. H. (2000) Rapid determination of protein folds using residual dipolar couplings. J. Mol. Biol. 304, 447-460. https://doi.org/10.1006/jmbi.2000.4199
  6. Garrett, D. S., Seok, Y. J., Peterkofsky, A., Gronenborn, A. M. and Clore, G. M. (1999) Solution structure of the 40,000 Mr phosphoryl transfer complex between the N-terminal domain of enzyme I and HPr. Nat. Struct. Biol. 6, 166-173. https://doi.org/10.1038/5854
  7. Goldsmith-Fischman, S. and Honig, B. (2003) Structural genomics: computational methods for structure analysis. Protein Sci. 12, 1813-1821. https://doi.org/10.1110/ps.0242903
  8. Goto, N. K. and Kay, L. E. (2000) New development in isotope labeling strategies for protein solution NMR spectroscopy. Curr. Opin. Struct. Biol. 10, 585-592. https://doi.org/10.1016/S0959-440X(00)00135-4
  9. Greenfield, N. J., Huang, Y. J., Palm, T., Swapna, G. V., Monleon, D., Montelione, G. T. and Hitchcock-DeGregori, S. E. (2001) Solution NMR structure and folding dynamics of the N terminus of a rat non-muscle alpha-tropomyosin in an engineered chimeric protein. J. Mol. Biol. 312, 833-847. https://doi.org/10.1006/jmbi.2001.4982
  10. Guntert, P., Salzmann, M., Braun, D. and Wuthrich, K. (2000) Sequence-specific NMR assignment of proteins by global fragment mapping with the program MAPPER. J. Biomol. NMR 18, 129-137. https://doi.org/10.1023/A:1008318805889
  11. Henderson, R. (1995) The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unconstrained biological molecules. Q. Rev. Biophys. 28, 171-193. https://doi.org/10.1017/S003358350000305X
  12. Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E. and Downing, K. H. (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899-929. https://doi.org/10.1016/S0022-2836(05)80271-2
  13. Herrmann, T., Guntert, P. and Wuthrich, K. (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 319, 209-227. https://doi.org/10.1016/S0022-2836(02)00241-3
  14. Huang, L., Hung, L., Odell, M., Yokota, H., Kim, R. and Kim, S-. H. (2002) Structure-based experimental confirmation of biochemical function to a methyltransferase, MJ0882, from hyperthermophile Methanococcus jannaschii. J. Struct. Funct. Genomics 2, 121-127. https://doi.org/10.1023/A:1021279113558
  15. Hui, R. and Edwards, A. (2003) High-throughput protein crystallization J. Struct. Biol. 142, 154-161. https://doi.org/10.1016/S1047-8477(03)00046-7
  16. Hwang, K. Y., Chung, J. H., Kim, S. H., Han, Y. S. and Cho, Y. (1999) Structure-based identification of a novel NTPase from Methanococcus jannaschii. Nat. Struct. Biol. 6, 691-696. https://doi.org/10.1038/10745
  17. Jung, J. -W., An, J. -H., Na, K. -B., Kim, Y. S. and Lee, W. (2000) Active site and substrate binding mode of malonyl-coa synthetase determined by trandsfered nuclear overhauser effect spectroscopy, site directed mutagenesis and comparative modeling studies. Protein Sci. 9, 1294-1303. https://doi.org/10.1110/ps.9.7.1294
  18. Karain, W. I., Bourenkov, G. P., Blume, H. and Bartunik, H. D. (2002) Automated mounting, centering and screening of crystals for high-throughput protein crystallography. Acta Crystallogr. D. Biol. Crystallogr. 58, 1519-1522. https://doi.org/10.1107/S0907444902012751
  19. Kigawa, T., Muto, Y. and Yokoyama, S. (1995) Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for NMR analysis. J. Biomol. NMR 6, 129-134.
  20. Kigawa, T., Yabuki, T., Yoshida, Y., Tsutsui, M., Ito, Y., Shibata, T. and Yokoyama, S. (1999) Cell-free production and stableisotope labeling of milligram-quantities of proteins. FEBS Lett. 442, 15-19. https://doi.org/10.1016/S0014-5793(98)01620-2
  21. Kim, S.-H. (1998) Shining light on structural genomics. Nat. Struc. Biol. 5, 643-645. https://doi.org/10.1038/1334
  22. Lee, C. -H., Jung, J. -W., Yee, A., Arrowsmith, C. H. and Lee, W. (2004) Solution Structure of a novel calcium binding protein, mth1880 from methanobacterium thermoautotrophicum. Protein Sci. in press.
  23. Medek, A., Olejniczak, E. T., Meadows, R. P. and Fesik, S. W. (2000) An approach for high-throughput structure determination of proteins by NMR spectroscopy. J. Biomol. NMR 8, 229-238.
  24. Montelione, G. T., Zheng, D., Huang, Y. J., Gunsalus, K. C. and Szyperski, T. (2000) Protein NMR spectroscopy in structural genomics. Nat. Struct. Biol. 7 Supl, 982-985. https://doi.org/10.1038/80768
  25. Moseley, H. N. B. and Montelione, G. T. (1999) Automated analysis of NMR assignments and structures for proteins. Curr. Opin. Struct. biol. 9, 635-642. https://doi.org/10.1016/S0959-440X(99)00019-6
  26. Mumenthaler, C., Guntert, P., Braun, W. and Wuthrich, K. (1997) Automated combined assignment of NOESY spectra and threedimensional protein structure determination. J. Biomol. NMR 10, 351-362. https://doi.org/10.1023/A:1018383106236
  27. Nilges, M., Macias, M. C., ODonoghue, S. I. and Oschkinat, H. (1997) Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from alpha-spectrin. J. Mol. Biol. 269, 408-422. https://doi.org/10.1006/jmbi.1997.1044
  28. Nogales, E., Wolf, S. G. and Downing, K. H. (1998) Structure of the $\alpha$, $\beta$ tubulin dimer by electron crystallography. nature 391, 199-203 https://doi.org/10.1038/34465
  29. O'Connell, J. F., Pryor, K. D., Grant, S. K. and Leiting, B. (1999) A high quality nuclear magnetic resonance solution structure of peptide deformylase from Escherichia coli: application of an automated assignment strategy using GARANT. J. Biomol. NMR 13, 311-324. https://doi.org/10.1023/A:1008311502626
  30. Pervushin. K., Riek, R., Wider., G. and Wuthrich, K. (1997) Attenuated T2 relaxation by mutual cancellation of dipoledipole coupling and chemical shift anisotropy indicates an venue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12366-12371. https://doi.org/10.1073/pnas.94.23.12366
  31. Rockel, B., Peters, J., Kuhlmorgen, B., Glaeser, R. M. and Baumeister, W. (2002) A giant protease with a twist: the TPP II complex from Drosophila studied by electron microscopy. EMBO J. 21, 5979-5984.
  32. Rosen, M. K., Gardner, K. H., Willis, R. C., Parris, W. E., Pawson, T. and Kay, L. E. (1996) Selective methyl group protonation of perdeuterated proteins. J. Mol. Biol. 263, 627-636. https://doi.org/10.1006/jmbi.1996.0603
  33. Rupp, B. (2003) High-throughput crystallography at an affordable cost: The TB structural genomics consortium crystallization facility, Acc. Chem. Res. 36, 173-181 https://doi.org/10.1021/ar020021t
  34. Sali, A., Glaeser, R., Earnest, T. and Baumeister, W. (2003) From words to literature in structural proteomics Nature 422, 216-225. https://doi.org/10.1038/nature01513
  35. Sanchez, R., Pieper, U., Melo, F., Eswar, N., Marti-Renom, M. A., Madhusudhan, M. S., Mirkovic, N. and Sali, A. (2000) Protein structure modeling for structural genomics. Nat. Struct. Biol. 7 Suppl, 986-990. https://doi.org/10.1038/80776
  36. Schmid, M. B. (2002) Structural proteomics: the potential of highthroughput structure determination. Trends Microbiol. 10, S27-31. https://doi.org/10.1016/S0966-842X(02)02443-5
  37. Service, R. F. (1998) NMR researchers look to the next generation of machines. Science 279, 1127-1128. https://doi.org/10.1126/science.279.5354.1127
  38. Staunton, D., Owen, J. and Campbell, I. D. (2003) NMR and structural genomics. Acc. Chem. Res. 36, 207-214. https://doi.org/10.1021/ar010119s
  39. Terwilliger, T. C. (2003) Automated structure solution, density modification and model building. Acta Crystallogr. D. Biol. Crystallogr. 58, 1937-1940.
  40. Tjandra, N., Omichinski, J. G., Gronenborn, A. M., Clore, G. M. and Bax, A. (1997) Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nat. Struct. Biol. 4, 732-738. https://doi.org/10.1038/nsb0997-732
  41. Wagner, G. (1993) Prospects for NMR of large proteins. J. Biomol. NMR 3, 375-385.
  42. Yamazaki, T., Otomo, T., Oda, N., Kyogoku, Y., Uegaki, K., Ito, N., Ishino, Y. and Nakamura, H. (1998) Segmental isotope labeling for protein NMR using peptide splicing. J. Am. Chem. Soc. 120, 5591-5592. https://doi.org/10.1021/ja980776o
  43. Yee, A., Chang, X., Pineda-Lucena, A., Wu, B., Semesi, A., Le B, Ramelot, T., Lee, G. M., Bhattacharyya, S., Gutierrez, P. et al. (2002) An NMR approach to structural proteomics Proc. Natl. Acad. Sci. USA 99, 1825-1830. https://doi.org/10.1073/pnas.042684599
  44. Yee, A., Pardee, K., Christendat, D., Savchenko, A., Edwards, A. M. and Arrowsmith, C. H. (2003) Structural proteomics: toward high-throughput structural biology as a tool in functional genomics. Acc. Chem. Res. 36, 183-189. https://doi.org/10.1021/ar010126g
  45. Zarembinski, T. I., Hung, L. W., Mueller-Dieckmann, H. J., Kim, K. K., Yokota, H., Kim, R. and Kim, S. H. (1998) Structurebased assignment of the biochemical function of a hypothetical protein: a test case of structural genomics. Proc. Natl. Acad. Sci. USA 95, 15189-15193. https://doi.org/10.1073/pnas.95.26.15189
  46. Zhang, P., Beatty, A., Milne, J. L. and Subramaniam, S. (2001) Automated data collection with a Tecnai 12 electron microscope: applications for molecular imaging by cryomicroscopy. J. Struct. Biol. 135, 251-261. https://doi.org/10.1006/jsbi.2001.4404

Cited by

  1. Tackling the plant proteome: practical approaches, hurdles and experimental tools vol.39, pp.5, 2004, https://doi.org/10.1111/j.1365-313X.2004.02182.x
  2. Structural proteomics by NMR spectroscopy vol.5, pp.4, 2008, https://doi.org/10.1586/14789450.5.4.589
  3. Recent applications of protein crystallography and structure-guided drug design vol.9, pp.4, 2005, https://doi.org/10.1016/j.cbpa.2005.06.007
  4. Backbone 1H, 15N, and 13C Resonance Assignment of HP1242 from Helicobacter pylori vol.38, pp.5, 2005, https://doi.org/10.5483/BMBRep.2005.38.5.591
  5. Importance of RNA secondary structure information for yeast donor and acceptor splice site predictions by neural networks vol.30, pp.1, 2006, https://doi.org/10.1016/j.compbiolchem.2005.10.009
  6. The use of proteomics to identify novel therapeutic targets for the treatment of disease vol.59, pp.5, 2007, https://doi.org/10.1211/jpp.59.5.0001