Charge transport properties of composites of multiwalled carbon nanotube with metal catalyst and polymer: application to electromagnetic interference shielding

Kim, H.M.;Kim, K.;Lee, S.J.;Joo, J.;Yoon, H.S.;Cho, S.J.;Lyu, S.C.;Lee, C.J.

  • Published : 20041100

Abstract

We report charge transport properties such as d.c. conductivity ($\sigma_{DC}$) and its temperature dependence for composites of poly(methyl methacrylate) (PMMA) and multiwalled carbon nanotubes (MWCNTs). The MWCNTs were synthesized through chemical vapor deposition with Fe or Co as catalyst. The MWCNTs were homogeneously dispersed in PMMA matrix through sonication to prepare MWCNT–PMMA composite films. We controlled mass concentration of MWCNTs in the composites, and the thickness of MWCNT–PMMA composite films was 20–400 $\mu$m. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectroscopy were used to study structure and homogeneity of the composites. The $\sigma_{DC}$ at room temperature of MWCNT–PMMA composites increased as mass concentration of MWCNTs increased, which followed percolation theory. Electromagnetic interference (EMI) shielding efficiency (SE) of MWCNT–PMMA composites was measured in the frequency range of 50 MHz–3.5 GHz. We observed the increase of EMI SE of MWCNT–PMMA composites with increasing the concentration of MWCNTs.

Keywords

References

  1. D. Tomanek, R.J. Enbody, Science and Application of Nanotubes, Kluwer Academic/Plenum Publishers, Boston, 2000
  2. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998.
  3. J.N. Coleman, S. Curran, A.B. Dalton, A.P. Davey, B. McCarthy, W. Blau, R.C. Barklie, Phys. Rev. B 58 (1998) 7492
  4. S. Curran, A.P. Davey, J. Coleman, A. Dalton, B. McCarthy, S. Maier, A. Drury, M. Brennan, K. Ryder, M. Lamy de la Chapelle, C. Journet, P. Bernier, H.J. Byrne, D. Carroll, P.M. Ajayan, S. Lefrant, W. Blau, Synth. Met. 103 (1999) 2559 https://doi.org/10.1016/S0379-6779(98)00279-3
  5. M. Lamy de la Chapelle, C. Stephan, T.P. Nguyen, S. Lefrant, C. Journet, P. Bernier, E. Munoz, A. Benito, W.K. Maser, M.T. Martinez, G.F. de la Fuente, T. Guillard, G. Flamant, L. Alvarez, D. Laplaze, Synth. Met. 103 (1999) 2510.
  6. J. Joo, A.J. Epstein, Appl. Phys. Lett. 65 (1994) 2278
  7. J. Joo, C.Y. Lee, J. Appl. Phys. 88 (2000) 513.
  8. Y.K. Hong et al., Rev. Sci. Instrum. 74 (2003) 1098.
  9. D. Stauffer, A. Aharony, Introduction to Percolation Theory, 2nd edition, Taylor & Francis, London, 1992
  10. R. Zallen, The Physics of Amorphous Solids, Wiley, New York, 1983.
  11. P. Sheng, E.K. Sichel, J.I. Gittleman, Phys. Rev. Lett. 40 (1978) 1197.