DOI QR코드

DOI QR Code

The Incidence and Distribution of Viral Diseases in Pepper by Cultivation Types

시설 및 노지재배 고추의 바이러스병 발생과 분포

  • Lee, Su-Heon (Plant Pathology Division, National Institute of Agricultural Science and Technology) ;
  • Lee, Jae-Bong (Plant Pathology Division, National Institute of Agricultural Science and Technology) ;
  • Kim, Sang-Mok (Plant Pathology Division, National Institute of Agricultural Science and Technology) ;
  • Choi, Hong-Soo (Plant Pathology Division, National Institute of Agricultural Science and Technology) ;
  • Park, Jin-Woo (Plant Pathology Division, National Institute of Agricultural Science and Technology) ;
  • Lee, Jun-Seong (Plant Pathology Division, National Institute of Agricultural Science and Technology) ;
  • Lee, Key-Woon (Department of Agricultural Biology, Kyungpook National University) ;
  • Moon, Jae-Sun (Lab. of Cellular Function Modulator, Korea Research Institute of Bioscience &)
  • 이수헌 (농업과학기술원 식물병리과) ;
  • 이재봉 (농업과학기술원 식물병리과) ;
  • 김상목 (농업과학기술원 식물병리과) ;
  • 최홍수 (농업과학기술원 식물병리과) ;
  • 박진우 (농업과학기술원 식물병리과) ;
  • 이준성 (농업과학기술원 식물병리과) ;
  • 이기운 (경북대학교 농생물학과) ;
  • 문제선 (한국생명공학연구원 세포기능조절연구실)
  • Published : 2004.12.01

Abstract

In the year of 2002 annual nationwide survey of virus diseases occurring in the pepper fields and greenhouses in Korea, the distribution and the incidence of viral diseases was investigated. The pepper samples from both greenhouses (155 samples) and open fields (227 samples) were collected and further analyzed to detect eleven different viruses by RT-PCR. The results indicate that no sample collected from both greenhouse and open field seems to be infected by TMV, RMV, PVY, AMV, and TSWV. On the other hand, CMV, BBWV2, PepMoV, PMMoV, TMGMV and ToMV are readily identified from greenhouse and open field samples by RT-PCR. The infection rates of the collected samples between greenhouse and open field are largely different. Comparing with 10% of virus-infected pepper samples grown in greenhouse, approximately one third of pepper samples collected from open field are infected. The mixed-infection rates in the virus-infected greenhouse and open field samples are 16% and 61%, respectively. The dominant virus occuring in greenhouse is PMMoV, indicating that virus-infected seed stocks and infected plant debris in the growing area may be important sources of inocula. On the other hand, both CMV and BBWV2 are dominant viruses in open field. This may indicate that the migration of viruliferous insect vectors into pepper fields may be the most important source of inoculum. Also, the survey shows that BBWV2 is newly immerging virus to be controlled in Korea. The discrepancies on the distribution and the occurrence of viral diseases between field and greenhouse may provide a fact that the accumulation and distribution of inoculum by successive cultivation and the migration of viruliferous vectors into growing areas are likely to be important factors to determine the incidence of viral diseases. Therefore, the further studies on epidemiology and the consideration of new breeding program of pepper are essential to minimize virus diseases.

2002년 노지 및 시설재배 고추를 대상으로 전국적인 규모의 바이러스병 발생실태를 조사하였다. 시설(155시료) 및 노지포장(227시료)에서 바이러스 감염주를 채집하여 전자현미경과 RT-PCR로 분석하였다. 시설 및 노지재배 고추에서 수집한 시료에서 TMV, RMV, PVY, AMV, TSWV에 감염된 것은 없었다. 그러나 CMV, BBWV, PepMoV, PMMoV, ToMV, TMGMV는 RT-PCR에 의해 검출되었다. 시설 및 노지재배 포장에서 바이러스 발병율은 상당히 다르게 나타났다. 시설재배에서는 10%의 발병율을 보였으나, 노지재배에서는 약 30%의 발병율을 나타냈다. 복합감염율은 시설 및 노지재배에서 각각 16%와 61%로 나타났다. 시설재배에서는 PMMoV가 우점하는 것으로 보아, 바이러스에 오염된 종자와 재배지에서의 바이러스 감염잔재물이 중요한 전염원이 된 것으로 보인다. 반대로 노지재배에서는 CMV와 BBWV가 우점하였다. 이것으로 보아 바이러스를 보독한 매개충의 이동이 가장 중요한 전염원으로 나타났다. 또한 이 연구에서 BBWV2는 우리나라에서 방제해야 할 새로운 바이러스로 대두되었다. 노지 및 시설재배에서 바이러스병의 발병율과 분포의 차이로 볼 때 연작에 따른 전염원의 축적 및 분포상과 재배지로의 바이러스 보독매개충의 이동이 바이러스 발생을 결정하는 중요한 요소로 보인다. 그러므로 식물병 역학과 고추의 새로운 육종 프로그램에 대한 진전된 연구가 바이러스 병을 줄이는데 필수적일 것이다.

Keywords

References

  1. Abdalla, O. A., Desjardine, P. R. and Dodds, J. A. 1991. Identification, disease incidence, and distribution of viruses infecting peppers in California. Plant Dis. 75: 1019-1023 https://doi.org/10.1094/PD-75-1019
  2. Alonso, E., Gracia, L. I., Avila, R. M. J., Wicke, B., Serra, M. T. and Diaz, R. J. R. 1989. A tobamovirus causing heavy losses in protected pepper crops in Spain. Journal of Phytopathology 125: 67-76 https://doi.org/10.1111/j.1439-0434.1989.tb01057.x
  3. Benner, C. P., Kuhn, C. w., Demski, J. W., Dobson, J. w., Colditz, P. and Nutter, F. W., Jr. 1985. Identification and incidence of pepper viruses in Northeastern Georgia. Plant Dis. 69: 999-1001
  4. Boccardo, G. and Conti, M. 1973. Purification and properties of nasturtium ringspot virus. Phytopathology Z. 78: 14-24 https://doi.org/10.1111/j.1439-0434.1973.tb04146.x
  5. Cho, J. J., Mau, R. F. L., German, T. L., Hartmann, R. W., Yudin, L. S., Gonsalves, D. and Provvidenti, R. 1989. A multidisciplinary approach to management of Tomato spotted wilt virus on Hawaii. Plant Dis. 73: 375-382 https://doi.org/10.1094/PD-73-0375
  6. 최장경, 박영섭, 김정옥, 박은경.1989. 고추에서 분리한 담배 모자이크 바이러스의 生物的특성' 한국식물병리학회지5(4) : 331-336
  7. Conti, M., Lisa, V. and Boccardo, G. 1972. Preliminary results on pepper virus diseases in Piemonte and Umbria Annalli Fac. Sci. Agr. Univ. Torino 7: 290-301
  8. Florini, D. A. and Zitter, T. A. 1987. Cucumber mosaic virus (CMV) in pepper (Capsicum annuum L.) in New York and associated yield losses. Phytopathology 77: 652(Abstr.)
  9. Gracia, L. I., Serra, M. T., Alonso, E., Wicke, M. L. and Diaz, R. J. R. 1990. Characterization of a Spanish strain of pepper mild mottle virus(PMMV-S) and its relationship to other tobamoviruses. J. Phytopathology 129(1): 1-8 https://doi.org/10.1111/j.1439-0434.1990.tb04284.x
  10. Gracia, O. and Gutierrez, L. S. 1982. Broad bean wilt virus in pepper crops in Argentina. Phytopath. Medit. 21: 107-109
  11. Green, S. K. and J. S. Kim. 1991. Characteristics and control of virus infecting peppers: A literature review, Technical bulletin No. 18. Asian Vegetable Research and Development Center
  12. Greenleaf, W. H., Cook, A. A. and Heyn, A. N. J. 1964 Resistance to Tobacco mosaic virus in Capsicum With reference to the Samsun latent strain. Phytopathology 54: 1367-1371
  13. Greenough, D. R. and Black, L. L. 1984. Occurrence of Frankliniella occidentalis in Louisiana. Phytopathology 75: 1362
  14. Hamm, P. B., Jaeger, J. R. and MacDonald, L. 1995. Virus disease of pepper in northeast Oregon. Plant Disease. 79: 968-971
  15. 한국식물병리학회. 1998. 한국식물병목록. 제3판. 436pp
  16. 한정헌. 1999. 고추 tobamovirus의 病原型 同定및 高比重라텍스粒子를 利用한 檢出. 서울대학교 박사학위논문
  17. Igwegbe, E. C. K. and Ogungbade, O. K. 1985 Evaluation of pepper cultivars under greenhouse conditions for resistance to a defoliation strain of tobacco mosaic virus. Plant Dis. 69: 899-900 https://doi.org/10.1094/PD-69-899
  18. 임경환, 정봉구, 윤진영, Sylvia K. Green. 1991. ELISA test를 이용한 우리나라 고추바이러스의 종류와 분포에 관한 조사. 한국식물병리학회지 7(4): 251-256
  19. Imoto, M. 1975. Studies on mosaic disease of sweet pepper (Capsicumfrutescens L.) 2. Occurrence of mosaic disease of sweet pepper and kinds of its causal viruses in Hiroshima prefecture. Bull. Hiroshima Agr. Expt. Station, Japan. 36: 56-66
  20. Joshi, R. D. and Dubey, L. N. 1973. Assessment of losses due to CMV on chili. Science and Culture 39: 521-522
  21. 강광원, 최정일, 라영준. 1973. 우리나라에 發生하는 고추의 바이러스 分離同定. 한국원예학회지 13: 35-43
  22. 김석환, 김인수, 이문홍. 1986. 주요 채소에서 발생하는 진딧물의 종류와 발생소장에 관한 연구. 한국식물보호학회지 25(3): 129-132
  23. Laird, E. F., Desjardins, P. R. and Dickson, R. C. 1964. Tobacco etch virus and potato virus Y from pepper in southern California. Plant Dis. Rep. 48: 772-776
  24. Lockhart, B. E. L. and Fischer, H. U. 1976. Some properties of an isolate of broad bean wilt virus associated with a field disease of pepper in Morocco. Phytopathol. Z. 88: 209-214 https://doi.org/10.1111/j.1439-0434.1977.tb03970.x
  25. Makkouk, K. M. and Gumpf, D. J. 1976. Characterization of potato virus Y strains isolated from pepper. Phytopathology 66: 576-581 https://doi.org/10.1094/Phyto-66-576
  26. Nagai, Y., Takeuchi, T. and Tochihara, H. 1981. A new mosaic disease of sweet pepper caused by pepper strain fo tobacco mosaic virus. Ann. Phytopath. Soc. Japan 47: 541-546 https://doi.org/10.3186/jjphytopath.47.541
  27. Pares, R. D. 1985. A tobamovirus infecting capsicum in Australia. Ann. Appl. Biol. 106: 459-474
  28. Purcifull, D. E., Zitter, T. A. and Hiebert, E. 1975. Morphology, host range and serological relationships of pepper mottle virus. Phytopathology 65: 559-562 https://doi.org/10.1094/Phyto-65-559
  29. 라영준, 최정일, 강광원. 1972. 血淸學的 方法에 依한 고추의 바이러스病 感染相 調査. 식물학회지 15: 23-27
  30. Schuerger, A. C. and Hammer, W. 1995. Effects of temperature on disease development of tomato mosaic virus in Capsicum annuum in hydroponic systems. Plant Dis. 79(9): 880-885 https://doi.org/10.1094/PD-79-0880
  31. Yankulova, M. and Kaitazova, P. 1979. Broad bean wilt virus-anew virus on pepper in Bulgaria. Grradinarska I Lozarska Nanka. 16: 48-57

Cited by

  1. Allergic risk assessment of genetically modified cucumber mosaic virus resistant pepper vol.22, pp.6, 2015, https://doi.org/10.11002/kjfp.2015.22.6.901
  2. New Korean isolates of Pepper mild mottle virus (PMMoV) differ in symptom severity and subcellular localization of the 126 kDa protein vol.53, pp.3, 2017, https://doi.org/10.1007/s11262-017-1432-4
  3. The Influence of Cover-crop (Vicia tetrasperma) Cultivation on the Occurrence of Major Insect Pests and their Natural Enemies in Pepper, Capsicum annum vol.32, pp.1, 2013, https://doi.org/10.5338/KJEA.2013.32.1.35
  4. Molecular characterization of Korean Pepper mottle virus isolates and its relationship to symptom variations vol.144, pp.1-2, 2009, https://doi.org/10.1016/j.virusres.2009.04.003
  5. 2007-2011 Characteristics of Plant Virus Infections on Crop Samples Submitted from Agricultural Places vol.18, pp.4, 2012, https://doi.org/10.5423/RPD.2012.18.4.277
  6. Evaluation of Resistance in Pepper Germplasm to Cucumber mosaic virus by High Resolution Melting Analysis vol.18, pp.4, 2012, https://doi.org/10.5423/RPD.2012.18.4.290
  7. Monitoring Occurrence Status of Thrips Populations on Field-Cultivated Pepper at Major Cultivated Region in West Coast, Korea vol.36, pp.4, 2018, https://doi.org/10.11626/KJEB.2018.36.4.544