DOI QR코드

DOI QR Code

Systematic Identification of Hepatocellular Proteins Interacting with NS5A of the Hepatitis C Virus

  • Ahn, Ji-Won (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Chung, Kyung-Sook (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Dong-Uk (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Won, Mi-Sun (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Li-La (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Kyung-Shin (College of Oriental Medicine, Taejon University) ;
  • Nam, Mi-Young (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Choi, Shin-Jung (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Hyoung-Chin (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Yoon, Mi-Chung (Department of Biology, Mokwon University) ;
  • Chae, Suhn-Kee (Department of Biochemistry, Paichai University) ;
  • Hoe, Kwang-Lae (Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Published : 2004.11.30

Abstract

The hepatitis C virus is associated with the development of liver cirrhosis and hepatocellular carcinomas. Among the 10 polyproteins produced by the virus, no function has been clearly assigned to the non-structural 5A (NS5A) protein. This study was designed to identify the hepatocellular proteins that interact with NS5A of the HCV. Yeast two-hybrid experiments were performed with a human liver cDNA prey-library, using five different NS5A derivatives as baits, the full-length NS5A (NS5A-F, amino acid (aa) 1~447) and its four different derivatives, denoted as NS5A-A (aa 1~150), -B (aa 1~300), -C (aa 300~447) and D (aa 150~447). NS5A-F, NS5A-B and NS5A-C gave two, two and 10 candidate clones, respectively, including an AHNAK-related protein, the secreted frizzled-related protein 4 (SFRP4), the N-myc downstream regulated gene 1 (NDRG1), the cellular retinoic acid binding protein 1 (CRABP-1), ferritin heavy chain (FTH1), translokin, tumor-associated calcium signal transducer 2 (TACSTD2), phosphatidylinositol 4-kinase (PI4K) and $centaurin{\delta}$ 2 ($CENT{\delta}2$). However, NS5A-A produced no candidates and NS5A-D was not suitable as bait due to transcriptional activity. Based on an in vitro binding assay, CRABP-1, PI4K, $CENT{\delta}2$ and two unknown fusion proteins with maltose binding protein (MBP), were confirmed to interact with the glutathione S-transferase (GST)/NS5A fusion protein. Furthermore, the interactions of CRABP-1, PI4K and $CENT{\delta}2$ were not related to the PXXP motif (class II), as judged by a domain analysis. While their biological relevance is under investigation, the results contribute to a better understanding of the possible role of NS5A in hepatocellular signaling pathways.

Keywords

References

  1. Ahn, B. H., Lee, J. H. and Bae, Y. S. (2003) Identification of mutations in protein kinase CKII$\beta$ subunit that affect its binding to ribosomal protein L41 and homodimerization. J. Biochem. Mol. Biol. 36, 344-348. https://doi.org/10.5483/BMBRep.2003.36.4.344
  2. Arima, N., Kao, C. Y., Licht, T., Padmanabhan, R. and Sasaguri, Y. (2001) Modulation of cell growth by the hepatitis C virus nonstructural protein NS5A. J. Biol. Chem. 276, 12675-12684. https://doi.org/10.1074/jbc.M008329200
  3. Bartenschlager, R. and Lohmann, V. (2000) Replication of the hepatitis C virus. Baillieres Best Pract. Res. Clin. Gastroenterol. 14, 241-254. https://doi.org/10.1053/bega.1999.0073
  4. Bossard, C., Laurell, H., Van den Berghe, L., Meunier, S., Zanibellato, C. and Prats, H. (2003) Translokin is an intracellular mediator of FGF-2 trafficking. Nat. Cell. Biol. 5, 433-439. https://doi.org/10.1038/ncb979
  5. Choo, Q. L., Kuo, G., Weiner, A. J., Overby, L. R., Bradley, D. W. and Houghton, M. (1989) Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359-362. https://doi.org/10.1126/science.2523562
  6. Chung, K. M., Lee, J., Kim, J. E., Song, O. K., Cho, S., Lim, J., Seedorf, M., Hahm, B. and Jang, S. K. (2000) Nonstructural protein 5A of hepatitis C virus inhibits the function of karyopherin beta3. J. Virol. 74, 5233-5241. https://doi.org/10.1128/JVI.74.11.5233-5241.2000
  7. Gehrmann, T. and Heilmeyer, L. M. Jr. (1998) Phosphatidylinositol 4-kinases. Eur. J. Biochem. 253, 357-370. https://doi.org/10.1046/j.1432-1327.1998.2530357.x
  8. Ghosh, A. K., Majumder, M., Steele, R., Yaciuk, P., Chrivia, J., Ray, R. and Ray, R. B. (2000) Hepatitis C virus NS5A protein modulates transcription through a novel cellular transcription factor SRCAP. J. Biol. Chem. 275, 7184-7188. https://doi.org/10.1074/jbc.275.10.7184
  9. Goh, P. Y., Tan, Y. J., Lim, S. P., Lim, S. G., Tan, Y. H. and Hong, W. J. (2001) The hepatitis C virus core protein interacts with NS5A and activates its caspase-mediated proteolytic cleavage. Virology 290, 224-236. https://doi.org/10.1006/viro.2001.1195
  10. Grakoui, A., Wychowski, C., Lin, C., Feinstone, S. M. and Rice, C. M. (1993) Expression and identification of hepatitis C virus polyprotein cleavage products. J. Virol. 67, 1385-1395.
  11. He, Y., Nakao, H., Tan, S. L., Polyak, S. J., Neddermann, P., Vijaysri, S., Jacobs, B. L. and Katze, M. G. (2002) Subversion of cell signaling pathways by hepatitis C virus nonstructural 5A protein via interaction with Grb2 and P85 phosphatidylinositol 3-kinase. J. Virol. 76, 9207-9217. https://doi.org/10.1128/JVI.76.18.9207-9217.2002
  12. Hebert, S., Berube, G. and Nepveu, A. (2003) Development of an in vitro assay for the proteolytic processing of the CDP/Cux transcription factor. J. Biochem. Mol. Biol. 36, 390-398. https://doi.org/10.5483/BMBRep.2003.36.4.390
  13. Kato, N., Lan, K. H., Ono-Nita, S. K., Shiratori, Y. and Omata, M. (1997) Hepatitis C virus nonstructural region 5A protein is a potent transcriptional activator. J. Virol. 71, 8856-8859.
  14. Kim, W. R. (2002) The burden of hepatitis C in the United States. Hepatology 36, 30-34.
  15. Macdonald, A., Crowder, K., Street, A., McCormick, C. and Harris, M. (2004) The hepatitis C virus NS5A protein binds to members of the Src family of tyrosine kinases and regulates kinase activity. J. Gen. Virol. 85, 721-729. https://doi.org/10.1099/vir.0.19691-0
  16. Majumder, M., Ghosh, A. K., Steele, R., Ray, R. and Ray, R. B. (2001) Hepatitis C virus NS5A physically associates with p53 and regulates p21/waf1 gene expression in a p53-dependent manner. J. Virol. 75, 1401-1407. https://doi.org/10.1128/JVI.75.3.1401-1407.2001
  17. Park, K. J., Choi, S. H., Lee, S. Y., Hwang, S. B. and Lai, M. M. (2002) Nonstructural 5A protein of hepatitis C virus modulates tumor necrosis factor alpha-stimulated nuclear factor kappa B activation. J. Biol. Chem. 277, 13122-13128. https://doi.org/10.1074/jbc.M111599200
  18. Pawson, T. (1995) Protein modules and signalling networks. Nature 373, 573-580. https://doi.org/10.1038/373573a0
  19. Santy, L. C. and Casanova, J. E. (2002) GTPase signaling: bridging the GAP between ARF and Rho. Curr. Biol. 12, R360-362. https://doi.org/10.1016/S0960-9822(02)00860-6
  20. Shi, S. T., Polyak, S. J., Tu, H., Taylor, D. R., Gretch, D. R. and Lai, M. M. (2002) Hepatitis C virus NS5A colocalizes with the core protein on lipid droplets and interacts with apolipoproteins. Virology 292, 198-210. https://doi.org/10.1006/viro.2001.1225
  21. Song, J., Nagano-Fujii, M., Wang, F., Florese, R., Fujita, T., Ishido, S. and Hotta, H. (2000) Nuclear localization and intramolecular cleavage of N-terminally deleted NS5A protein of hepatitis C virus. Virus Res. 69, 109-117. https://doi.org/10.1016/S0168-1702(00)00206-9
  22. Street, A., Macdonald, A., Crowder, K. and Harris, M. (2004) The Hepatitis C virus NS5A protein activates a phosphoinositide 3- kinase-dependent survival signaling cascade. J. Biol. Chem. 279, 12232-12241. https://doi.org/10.1074/jbc.M312245200
  23. Tan, S. L., Nakao, H., He, Y., Vijaysri, S., Neddermann, P., Jacobs, B. L., Mayer, B. J. and Katze, M. G. (1999) NS5A, a nonstructural protein of hepatitis C virus, binds growth factor receptor-bound protein 2 adaptor protein in a Src homology 3 domain/ligand-dependent manner and perturbs mitogenic signaling. Proc. Natl. Acad. Sci. USA 96, 5533-5538. https://doi.org/10.1073/pnas.96.10.5533
  24. Tanimoto, A., Ide, Y., Arima, N., Sasaguri, Y. and Padmanabhan, R. (1997) The amino terminal deletion mutants of hepatitis C virus nonstructural protein NS5A function as transcriptional activators in yeast. Biochem. Biophys. Res. ommun. 236, 360-364. https://doi.org/10.1006/bbrc.1997.6967
  25. Tong, C. Y., Gilmore, I. T. and Hart, C. A. (1995) HCV-associated liver cancer. Lancet 345, 1058-1059.
  26. Tu, H., Gao, L., Shi, S. T., Taylor, D. R., Yang, T., Mircheff, A. K., Wen, Y., Gorbalenya, A. E., Hwang, S. B. and Lai, M. M. (1999) Hepatitis C virus RNA polymerase and NS5A complex with a SNARE-like protein. Virology 263, 30-41. https://doi.org/10.1006/viro.1999.9893
  27. Wientjes, F. B. and Segal, A. W. (2003) PX domain takes shape. Curr. Opin. Hematol. 10, 2-7. https://doi.org/10.1097/00062752-200301000-00002

Cited by

  1. Ferritin Heavy Chain Is the Host Factor Responsible for HCV-Induced Inhibition of apoB-100 Production and Is Required for Efficient Viral Infection vol.11, pp.5, 2012, https://doi.org/10.1021/pr201128s
  2. Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy vol.1845, pp.1, 2014, https://doi.org/10.1016/j.bbcan.2013.11.002
  3. Unique ties between hepatitis C virus replication and intracellular lipids vol.22, pp.6, 2011, https://doi.org/10.1016/j.tem.2011.03.004
  4. Overexpression of NDRG1 is an indicator of poor prognosis in hepatocellular carcinoma vol.20, pp.1, 2007, https://doi.org/10.1038/modpathol.3800711
  5. Ferritin heavy polypeptide 1 mediates apoptosis-related gene expression of duck (Anas platyrhynchos domesticus) vol.96, pp.4, 2016, https://doi.org/10.1139/cjas-2015-0210
  6. Integrative network analysis identifies key genes and pathways in the progression of hepatitis C virus induced hepatocellular carcinoma vol.4, pp.1, 2011, https://doi.org/10.1186/1755-8794-4-62
  7. Potential roles for cellular cofactors in hepatitis C virus replication complex formation vol.2, pp.6, 2009, https://doi.org/10.4161/cib.2.6.9261
  8. A Functional Genomic Screen Identifies Cellular Cofactors of Hepatitis C Virus Replication vol.5, pp.3, 2009, https://doi.org/10.1016/j.chom.2009.02.001
  9. Cloning and Characterization of a Rice cDNA Encoding Glutamate Decarboxylase vol.38, pp.5, 2005, https://doi.org/10.5483/BMBRep.2005.38.5.595
  10. HCVpro: Hepatitis C virus protein interaction database vol.11, pp.8, 2011, https://doi.org/10.1016/j.meegid.2011.09.001
  11. The Role of Fas/Fas Ligand System in the Pathogenesis of Liver Cirrhosis and Hepatocellular Carcinoma vol.12, pp.11, 2012, https://doi.org/10.5812/hepatmon.6132
  12. Roles for endocytic trafficking and phosphatidylinositol 4-kinase III alpha in hepatitis C virus replication vol.106, pp.18, 2009, https://doi.org/10.1073/pnas.0902693106
  13. Proteomic approaches to analyzing hepatitis C virus biology vol.15, pp.12, 2015, https://doi.org/10.1002/pmic.201500009
  14. Identification of a lipid kinase as a host factor involved in hepatitis C virus RNA replication vol.387, pp.1, 2009, https://doi.org/10.1016/j.virol.2009.02.039
  15. Hepatitis C Virus Life Cycle and Lipid Metabolism vol.3, pp.4, 2014, https://doi.org/10.3390/biology3040892
  16. A Novel Immuno-Competitive Capture Mass Spectrometry Strategy for Protein–Protein Interaction Profiling Reveals That LATS Kinases Regulate HCV Replication Through NS5A Phosphorylation* vol.13, pp.11, 2014, https://doi.org/10.1074/mcp.M113.028977
  17. Understanding the Biological Context of NS5A–Host Interactions in HCV Infection: A Network-Based Approach vol.12, pp.6, 2013, https://doi.org/10.1021/pr3011217
  18. Quantitative analysis of cellular proteome alterations in human influenza A virus-infected mammalian cell lines vol.9, pp.12, 2009, https://doi.org/10.1002/pmic.200800893
  19. Turning Hepatitis C into a Real Virus vol.65, pp.1, 2011, https://doi.org/10.1146/annurev-micro-090110-102954
  20. Hepatitis C virus nonstructural protein 4B: a journey into unexplored territory vol.20, pp.2, 2010, https://doi.org/10.1002/rmv.640
  21. Mammalian phosphatidylinositol 4-kinases as modulators of membrane trafficking and lipid signaling networks vol.52, pp.3, 2013, https://doi.org/10.1016/j.plipres.2013.04.002
  22. Hsp90 transcriptionally and post-translationally regulates the expression of NDRG1 and maintains the stability of its modifying kinase GSK3β vol.1793, pp.10, 2009, https://doi.org/10.1016/j.bbamcr.2009.08.002
  23. h-Prune as a novel binding protein of NS5A that regulates ERK1/2 activation vol.59, pp.4, 2016, https://doi.org/10.1007/s13765-016-0193-4
  24. NS5ATP9, a gene up-regulated by HCV NS5A protein vol.259, pp.2, 2008, https://doi.org/10.1016/j.canlet.2007.10.029
  25. Biological activities and molecular interactions of the C-terminal residue of thrombospondin-4, an epitome of acidic amphipathic peptides vol.31, pp.4, 2010, https://doi.org/10.1016/j.peptides.2009.12.011
  26. Phosphatidylinositol 4-kinases: hostages harnessed to build panviral replication platforms vol.37, pp.7, 2012, https://doi.org/10.1016/j.tibs.2012.03.004
  27. Roles of phosphoinositides and phosphoinositides kinases in hepatitis C virus RNA replication vol.35, pp.10, 2012, https://doi.org/10.1007/s12272-012-1001-2
  28. Phosphatidylinositol 4-kinases: Function, structure, and inhibition vol.337, pp.2, 2015, https://doi.org/10.1016/j.yexcr.2015.03.028
  29. Kinases required in hepatitis C virus entry and replication highlighted by small interference RNA screening vol.23, pp.11, 2009, https://doi.org/10.1096/fj.09-131920
  30. Serum levels of soluble Fas, soluble tumor necrosis factor-receptor II, interleukin-2 receptor and interleukin-8 as early predictors of hepatocellular carcinoma in Egyptian patients with hepatitis C virus genotype-4 vol.9, pp.1, 2010, https://doi.org/10.1186/1476-5926-9-1