Characteristics of $ZrO_2$ Films Deposited by Using the Atomic Layer Deposition Method

Lee, Jang-Hee;Koo, Jae-Hyoung;Sim, Hyun-Sang;Jeon, Hyeong-Tag;Won, Young-Do

  • Published : 2004.04.15

Abstract

The physical and the electrical properties of $ZrO_2$ dielectric film were investigated to determine if this film could be applied as a potential replacement for the $SiO_2$ gate dielectric. $ZrO_2$ films were successfully deposited on p-type Si substrates by using the atomic layer deposition (ALD) technique with $ZrCl_4\;and\;H_2O$. The $ZrO_2$films exhibited a very low chlorine content below the detection limit of the Auger electron spectrometer and showed the stoichiometric characteristics of $ZrO_2$. The interfacial layer formed between the $ZrO_2$ film and the Si substrate was observed and analyzed by using X-ray photoelectron spectroscopy and was found to be Zr-silicate and/or a $SiO_x$ layer with an amorphous phase. This interfacial layer became thicker as the annealing temperature was increased. Cross-sectional transmission electron microscopy images of the $ZrO_2$ films showed a randomly oriented polycrystalline structure. The flat-band voltage and the calculated dielectric constant of the $ZrO_2$ film were 0.7 V and 13.7, respectively. The leakage current of the $ZrO_2$ films was $7.5\;{\times}\;10^{-5}\;A/cm^2$ at a gate bias voltage of ${\mid}\;V_G-V_{FB}\;{\mid}$ = 2 Volts with an equivalent oxide thickness value of 1.9 nm.

Keywords

References

  1. J. Vac. Sci. Technol. v.20 Khandelwal, A.;Niimi, H.;Lucovsky, G.;Henry Lamb, H.
  2. Appl. Phys. Lett. v.78 Jeon, T.S.;White, J.M.;Kwong, D.L.
  3. Nature (London) v.406 Kingon, A.I.;Maria, J.P.;Streiffer, S.K.
  4. J. Appl. Phys. v.87 Wilk, G.D.;Wallace, R.M.;Anthony, J.M.
  5. Appl. Phys. Lett. v.76 Gusev, E.P.;Copel, M.;Cartier, E.;Baumvol, I.J.R.;Krug, C.;Gribelyuk, M.A.
  6. Appl. Phys. Lett. v.80 Gopalan, S.;Onishi, K.;Nieh, R.;Kang, C.S.;Choi, R.;Cho, H.J.;Krishna, S.;Lee, J.C.
  7. Appl. Phys. Lett. v.81 Yu, H.Y.;Li, M.F.;Cho, B.J.;Yeo, C.C.;Joo, M.S.;Kwong, D.L.;Pan, J.S.;Ang, C.H.;Zheng, J.Z.;Ramanathan, S.
  8. J. Korean Phys. Soc. v.40 Roh, K.;Yang, S.;Hong, B.;Roh, Y.;Kim, J.;Jung, D.
  9. Appl. Phys. Lett. v.76 Copel, M.;Gribelyuk, M.;Gusev, E.P.
  10. Appl. Phys. Lett. v.77 Qi, W.J.;Nieh, R.;Lee, B.H.;Kang, L.;Jeon, Y.;Lee, J.C.
  11. J. Korean Phys. Soc. v.44 Choi, S.;Koo, J.;Kim, Y.;Jeon, H.
  12. Appl. Surf. Sci. v.75 Ritala, M.;Leskela, M.
  13. Mater. Sci. Rep. v.4 Suntola, T.
  14. Chem. Vap. Depos. v.5 Ritala, M.;Leskela, M.;Dekker, J.P.;Mutsaers, C.;Soininen, P.J.;Skarp, J.
  15. J. Electrochem. Soc. v.142 Ritala, M.;Leskela, M.;Rauhala, E.;Haussalo, P.
  16. J. Korean Phys. Soc. v.40 Kim, J.;Kim, H.;Kim, Y.;Kim, Y.;Kim, W.;Jeon, H.