DOI QR코드

DOI QR Code

Isolation and Identification of Antagonistic Bacterium Active against Sclerotinia sclerotioum Causing Sclerotinia Rot on Crisphead Lettuce

결구상추 균핵병균(Sclerotinia sclerotioum)에 대한 길항세균의 분리 및 동정

  • Kim, Han-Woo (Center for Biotechnology, Dong-A University) ;
  • Lee, Kwang-Youll (College of Natural Resources and Life Science, Dong-A University) ;
  • Baek, Jung-Woo (College of Natural Resources and Life Science, Dong-A University) ;
  • Kim, Hyun-Ju (College of Natural Resources and Life Science, Dong-A University) ;
  • Park, Jong-Young (College of Natural Resources and Life Science, Dong-A University) ;
  • Lee, Jin-Woo (College of Natural Resources and Life Science, Dong-A University) ;
  • Jung, Soon-Je (College of Natural Resources and Life Science, Dong-A University) ;
  • Moon, Byung-Ju (College of Natural Resources and Life Science, Dong-A University)
  • 김한우 (동아대학교 농업생명연구소) ;
  • 이광렬 (동아대학교 생명자원과학대학) ;
  • 백정우 (동아대학교 생명자원과학대학) ;
  • 김현주 (동아대학교 생명자원과학대학) ;
  • 박종영 (동아대학교 생명자원과학대학) ;
  • 이진우 (동아대학교 생명자원과학대학) ;
  • 정순재 (동아대학교 생명자원과학대학) ;
  • 문병주 (동아대학교 생명자원과학대학)
  • Published : 2004.12.01

Abstract

The fungus genus Sclerotinia contains a number of important plant pathogens. Vegetable growers in our country are probably most familiar with Sclerotinia sclerotiorum, the causes of sclerotinia rot on crisphead lettuce. S. sclerotiorum has a wide host range which can include lettuce as well as crops such as broccoli, cabbage, carrots, celery, beans, peppers, potatoes, stocks, and tomato. Some fungicides, including benomyl, are effective in some crops, but not all. So, we isolated a antagonistic bacteria that are active on sclerotinia rot caused by S. sclerotiorum and that can be used to control it. About 702 strains had been isolated from soil around plant roots in the field. Ten strains showed strong antifungal activity against S. sclerotiorum. In pot test for antagonistic activity, A-7 strain showed high control value against the pathogen when compared with others. The strain was, therefore, selected as a biocontrol candidate against sclerotinia rot and its biochemical properties and 16S rDNA sequence was analyzed. The A-7 strain was highly related to Bacillus subtilis and B. amyloliquefaciens. To confirm precise identification, we had performed gyr A gene sequences analysis. Its sequence had 96% similarity with B. amyloliquefaciens. Consequently, the isolate was identified as B. amyloliquefaciens A-7.

결구상추에 심각한 피해를 일으키는 균핵병의 생물학적 방제를 위한 기초연구로서 균핵병원균 S. sclerotioum YR-1 대한 우수 길항세균을 선발하고 동정하였다. 건전 결구상추에서 분리한 세균들 중 균핵병원균의 균사생육저지 효과가 큰 10 균주를 길항세균으로 1차 선발하고 이들 일차 길항세균에 의한 방제효과를 생육실내 포트검정한 결과, A-2, A-7 및 RH-4 균주의 방제가가 각각 73.0%, 85.0%, 80.0%이었으며, 이 중 가장 높은 방제가를 보인 A-7 균주를 우수 길항균으로 최종선발하였다. A-7 균주의 생화학적 특성 및 16S rDNA와 gyrA 염기서열을 분석한 결과 Bacillus amyloliquefaciens로 동정되었으며, B. amyloliquefaciens A-7으로 명명하였다.

Keywords

References

  1. Adams, P. B. and Ayers, W. A. 1979. Ecology of Sclerotinia species. Phytopathol. 69: 896-899 https://doi.org/10.1094/Phyto-69-896
  2. Asaka, O. and Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbial. 62: 4081-4085
  3. Ash, C., Farrow, J. A. E., Wallbanks, S. and Collins, M. D. 1991. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small subunitribosomal RNA sequences. Lett. Appl. Microbiol. 13: 202-206 https://doi.org/10.1111/j.1472-765X.1991.tb00608.x
  4. Biondi, N., Piccardi, R., Margheri, M. C, Rodolfi, L., Smith, G. D. and Tredici, M. R. 2004. Evaluation of Nostoc strain ATCC 53789 as a potential source of natural pesticides. Appl. Environ. Microbial. 70(6): 3313-3320 https://doi.org/10.1128/AEM.70.6.3313-3320.2004
  5. Cho, S. J., Lee, S. K., Cha, B. J., Kim, Y. H. and Shin, K. S. 2003. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. FEMS Microbial. Lett. 223: 47-51 https://doi.org/10.1016/S0378-1097(03)00329-X
  6. Chun, J. S. and Bae, K. S. 2000. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie van Leeuwenhoek 78: 123-127 https://doi.org/10.1023/A:1026555830014
  7. Cook, R. J. and Baker, K. F. 1983. The nature and practice of biological control of plant pathogens. APS. st. Paul, Minnesota. 539pp
  8. Dandurand, L. M., Mosher, R. D. and Knudsen, G. R. 2000. Combined effects of Brassica napus seed meal and Trichoderma harzianum on two soilborne plant pathogens. Can. J. Microbiol. 46(11): 1051-1057 https://doi.org/10.1139/cjm-46-11-1051
  9. de Vrije, T., Antoine, N., Buitelaar, R. M., Bruckner, S., Dissevelet, M., Durand, A., Gerlagh,M. and Jones, E. E. et. 2001. The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing. Appl. Microbiol. Biotech. 56: 58-68 https://doi.org/10.1007/s002530100678
  10. Eshita, S. M., Roberto, N. H., Beale, J. M., Marniya, B. M. and Workman, R. F. 1995. Bacillomycin Lc, a new antibiotic of iturin group: isolation, structures and antifungal activities of the congeners. Journal of Antibiotics 48: 1240-1247 https://doi.org/10.7164/antibiotics.48.1240
  11. Expert, J. M. and Digat, B. 1995. Biocontrol of Sclerotinia wilt of sunflower by Pseudomonas fluorescens and Pseudomonas putida strains. Can. J. Microbiol. 41: 685-691 https://doi.org/10.1139/m95-094
  12. Handelsman, J. and Stabb, E. V. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8: 1855-1186 https://doi.org/10.1105/tpc.8.10.1855
  13. 한옥경, 이은탁, 김상달. 2001. 식물병원균을 길항하는 chitinase 생산성 생물방제균 Bacillus amyloliquefaciens 7079의 선발과 chitinase 생산조건. 산업미생물학회지. 29(3): 142-148
  14. Jack, A. L. and Robert P. L. 1998. Formulation of the biocontrol fungus Cladorrhinum foecundissimum to reduce Damping off disease caused by Rhiroctonia solani and Pythium ultimum. Biological Control. 12(3): 182-190 https://doi.org/10.1006/bcon.1998.0639
  15. Jack, A. L. and Robert, P. L. 2001. Biological control of damping off of greenhouse grown crops caused by Rhizoctonia solani with a formulation of Trichoderma spp. Crop Protectio. 20: 49-56 https://doi.org/10.1016/S0261-2194(00)00052-1
  16. Kajimura, Y, Sugiyama, M. and Kaneda, M. 1995. Bacillopeptins, new cyclic lipopeptide antibiotics from Bacillus subtilis FR-2. Journal of Antibiotics 48: 1095-1110 https://doi.org/10.7164/antibiotics.48.1095
  17. Katz, E. and Demain, A. L. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriological Review 41: 449-474
  18. Kim, C. H., Jee, H. J., Park, K S. and Lee, E. J. 1990. Studies on biological control of phytophthora blight of red pepper V. Performance of antagonistic agents in fields. Korean J. Plant Pathol. 6(2): 201-206
  19. Kim, D., Cook, R. J. and Weller, D. 1997. Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathology 87: 551-558 https://doi.org/10.1094/PHYTO.1997.87.5.551
  20. Kim, P. I. and Chung, K. C. 2004. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol Lett. 234(1): 177-183 https://doi.org/10.1111/j.1574-6968.2004.tb09530.x
  21. 이재필, 손지희, 노성환, 손영준, 문병주. 2000. Bacillus megaterium N4를 이용한 들깨 균핵병(Sclerotinia sclerotiorum)의 생물학적 방제. 균학회소식 12(1): 73p
  22. Li, G. Q., Huang, H. C. and Acharya, S. N. 2003. Antagonism and biocontrol potential of Ulocladium atrum on Sclerotinia sclerotiorum. Biological Control 28: 11-18 https://doi.org/10.1016/S1049-9644(03)00050-1
  23. Merav, K, Marianna, O., Ilan C. and Leonid, C. 2003. Soil borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biology and Biochemistry 35: 323-331 https://doi.org/10.1016/S0038-0717(02)00283-3
  24. Nakamura, L. K 1999. Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizisenii subsp. nov. Int. J. Syst. Bacteriol. 49: 1211-1215 https://doi.org/10.1099/00207713-49-3-1211
  25. Pedras, M. S., Ismail, N., Quail, J. W. and Boyetchko, S. M. 2003. Structure, chemistry, and biological activity of pseudophomins A and B, new cyclic lipodepsipeptides isolated from the bicontrol bacterium Psudomonas fluorescens. Phytochemistry 62(7): 1105-1114 https://doi.org/10.1016/S0031-9422(02)00617-9
  26. Podile, A. R. and Prakash, A. P. 1996. Lysis and biological control of Aspergillus niger by Bacillus subtilis API. Can. J. Microbiol. 42: 533-538 https://doi.org/10.1139/m96-072
  27. Purdy, L. H. 1955. A broader comcept of the species Sclerotinia sclerotiorum bassed on variability. Phytopathology. 45: 421-427
  28. Souto, G. I., Correa, O. S., Montecchia, M. S., Kerber, N. L., Pucheu, N. L., Bachur, M. and Garcia, A. F. 2004. Genetic and functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolites partially identified as iturin like compounds. Journal of Applied Microbiology 97: 1247-1256 https://doi.org/10.1111/j.1365-2672.2004.02408.x
  29. Wang, S. L., Shih, I. L., Liang, T. W. and Wang, C. H. 2002. Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium. J. Agric Food Chem. 10(50): 2241-2248
  30. Whipps, J. M. and Gerlagh, M. 1992. Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycol. Res. 96: 897-907 https://doi.org/10.1016/S0953-7562(09)80588-1
  31. Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K and Shirata, A. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91: 181-187 https://doi.org/10.1094/PHYTO.2001.91.2.181
  32. Zuber, P., Nakano, M. and Marahiel, M. A. 1993. Peptide antibiotics: Bacillus subtilis and other Gram positive bacteria. In : Biochemistry, Physiology, and Molecular Genetics ed. by Sonenshein, A. L., Hoch, J. A. and Losick, R. pp. 897-916. Washington, DC: American Society of Microbiology

Cited by

  1. Isolation and Characterization of an Antagonistic Endophytic Bacterium Bacillus velezensis CB3 the Control of Citrus Green Mold Pathogen Penicillium digitatum vol.40, pp.2, 2012, https://doi.org/10.4489/KJM.2012.40.2.118
  2. Biological Control of Lettuce Sclerotinia Rot by Bacillus subtilis GG95 vol.42, pp.3, 2014, https://doi.org/10.4489/KJM.2014.42.3.225