An Ultimate Pressure Capacity Assessment of Prestressed Concrete Containment Vessel Considering Non-symmetric Factors

비대칭요소를 고려한 PSC 원자로 격납건물의 극한내압능력 평가

Moon, Il-Hwan;Sim, Jong-Sung
문일환;심종성

  • Published : 2004.05.31

Abstract

Under the ultimate internal pressure the nuclear reactor containment vessel represents the non-symmetrical and the non-linear behavior, since the structure has the non-symmetric factors such as buttresses, large penetrations and tendon layout in the dome. These non-symmetric factors may affect the ultimate pressure capability of the prestressed concrete containment vessel. In the present, however, the assessment method is carried out by using the axi-symmetric finite element model neglecting the non-symmetry. In this study, the nuclear reactor containment vessel is idealized as the three-dimensional model including the non-symmetric factors. And the Modified Drucker-Prager constitutive model with non-associated plastic flow is used for the three-dimensional concrete model. Based on the comparison results between the axi-symmetric finite element analysis and the three-dimensional finite element analysis using tests of 1/4-scale prestressed concrete containment vessel, the nonlinear behavior under internal pressure is directly influenced by the non-symmetries of the structure.

극한내압 발생시 원자로 격납건물은 부벽, 주요 관통부 및 돔 텐던배치 등과 같은 비대칭요소에 의해 비선형 비대칭 거동 특성을 나타내게 된다. 이와 같은 비대칭요소들은 프리스트레스트 콘크리트(PSC) 원자로 격납건물의 극한내압능력에 영향을 미칠 수 있다. 그러나 지금까지는 비대칭요소들을 제외한 축대칭모델링기법을 적용한 해석방법으로 원자로 격납건물의 극한 내압능력을 평가해 왔다. 본 연구에서는 비대칭요소를 포함한 3차원 유한요소모델을 구축하였으며, 콘크리트의 연속체모델로서 비연관 소성흐름을 갖는 Modified Drucker-Prager모델을 사용하였다. PSC 원자로 격납건물 1/4 축소모형 시험을 이용하여 축대칭 유한요소해석과 3차원 비대칭 유한요소해석을 수행한 결과, 비대칭요소들은 원자로 격납건물의 극한내압능력에 직접적인 영향을 미치는 것을 알 수 있었다.

Keywords

References

  1. Constitutive Equations for Engineering Materials Chen, W.F.;Saleeb, A.F.
  2. Quarterly of Applied Mathematics v.10 Soil Mechanics And Plastic Analysis or Limit Design Drucker, D.C.;Prager, W.
  3. ABAQUS User's Manual Hibbit, H.D.(et al.)
  4. Journal of Geotechnical Engineering Division v.106 no.GT9 Empirical Strength Criterion for Rock Masses Hoek, E.;Brown, E.T.
  5. Unified Theory of Reinforced Concrete Hsu, T.T.C.
  6. Degradation and Plastic Deformation of Concrete;IFTR Report 38 Klisinski, M.
  7. ACI Journal, Proceedings v.66 no.8 Behavior of Concrete under Biaxial Stresses Kupfer, H.;Hilsdorf, H.K.;Rusch, H.
  8. Pretest Round Robin Analysis of A Prestressed Concrete Containment Vessel Model;NUREG/CR-6678 Luk, V.K.
  9. Mathcad User's Guide Math Soft
  10. ACI Structural Journal v.92 Triaxial Failure Criterion for Concrete and Its Generalization Menetrey, P.H.;Willam, K.J.
  11. On Fundamental Aspects of Concrete Behavior Smith, S.
  12. Constitutive Model for Triaxial Behavior of Concrete, Concrete Structures Subjected to Triaxial Stresses Willam, K.J.;Warnke, E.P.