Osteoimmunology: Interactions of the Immune and Skeletal Systems

  • Published : 20040000

Abstract

Keywords

References

  1. J. Cell. Biochem. v.55 Function of osteocytes in bone Aarden,E.M.;Burger,E.H.;Nijweide,P.J. https://doi.org/10.1002/jcb.240550304
  2. Bone v.31 Characterization of the bone-resorptive effect of interleukin-11 in cultured mouse calvarial bones Ahlen,J.;Andersson,S.;Mukohyama,H.;Roth,C.;Backman,A.;Conaway,H.H.;Lerner,U.H. https://doi.org/10.1016/S8756-3282(02)00784-6
  3. Hematology (Am. Soc. Hematol. Educ. Program) Multiple myeloma Anderson,K.C.;Shaughnessy,J.D.Jr.;Barlogie,B.;Harousseau,J.L.;Roodman,G.D.
  4. Nature v.408 Bone versus immune system Arron,J.R.;Choi,Y. https://doi.org/10.1038/35046196
  5. J. Biol. Chem. v.276 A positive regulatory role for Cbl family proteins in tumor necrosis factor-related activation-induced cytokine (trance) and CD40L-mediated Akt activation Arron,J.R.;Vologodskaia,M.;Wong,B.R.;Naramura,M.;Kim,N.;Gu,H.;Choi,Y. https://doi.org/10.1074/jbc.M100414200
  6. Semin. Oncol. v.29 Treatment of hypercalcemia of malignancy with bisphosphonates Berenson,J.R.
  7. Nature v.423 Osteoclast differentiation and activation Boyle,W.J.;Simonet,W.S.;Lacey,D.L. https://doi.org/10.1038/nature01658
  8. Biochem. Biophys. Res. Commun. v.247 Regulation of osteoprotegerin mRNA levels by prostaglandin E2 in human bone marrow stroma cells Brandstrom,H.;Jonsson,K.B.;Ohlsson,C.;Vidal,O.;Ljunghall,S.;Ljunggren,O. https://doi.org/10.1006/bbrc.1998.8783
  9. Genes Dev. v.12 Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification Bucay,N.;Sarosi,I.;Dunstan,C.R.;Morony,S.;Tarpley,J.;Capparelli,C.;Scully,S.;Tan,H.L.;Xu,W.;Lacey,D.L.;Boyle,W.L.;Simonet,W.S. https://doi.org/10.1101/gad.12.9.1260
  10. Semin. Hematol. v.38 Myeloma bone disease Callander,N.S.;Roodman,G.D. https://doi.org/10.1016/S0037-1963(01)90020-4
  11. Blood v.101 Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO Chagraoui,H.;Tulliez,M.;Smayra,T.;Komura,E.;Giraudier,S.;Yun,T.;Lassau,N.;Vainchenker,W.;Wendling,F. https://doi.org/10.1182/blood-2002-09-2839
  12. J. Clin. Invest. v.108 Antisense inhibition of macrophage inflammatory protein 1-alpha blocks bone destruction in a model of myeloma bone disease Choik,S.J.;Oba,Y.;Gazitt,Y.;Alsina,M.;Cruz,J.;Anderson,J.;Roodman,G.D.
  13. J. Biol. Chem. v.273 Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c-Jun N-terminal kinase Darnay,B.G.;Haridas,V.;Ni,J.;Moore,P.A.;Aggarwal,B.B. https://doi.org/10.1074/jbc.273.32.20551
  14. J. Biol. Chem. v.274 Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif Darnay,B.G.;Ni,J.;Moore,P.A.;Aggarwal,B.B. https://doi.org/10.1074/jbc.274.12.7724
  15. Genes Dev. v.13 RANK is essential for osteoclast and lymph node development Dougall,W.C.;Glaccum,M.;Charrier,K.;Rohrbach,K.;Brasel,K.De Smedt,T.;Daro,E.;Smith,J.;Tometsko,M.E.;Maliszewski,C.R.;Armstrong,A.;Shen,V.;Bain,S.;Cosman,D.;Anderson,D.;Morrissey,P.J.;Peschon,J.J.;Schuh,J. https://doi.org/10.1101/gad.13.18.2412
  16. Arthritis Rheum. v.46 Inportance of T cells in rheumatoid synovitis, comment on the review by Firestein and Zvaifler Edwards,J.C. https://doi.org/10.1002/art.10507
  17. Nature v.423 Evolving concepts of rheumatoid arthritis Firestein,G.S. https://doi.org/10.1038/nature01661
  18. J. Biol. Chem. v.273 The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-kappaB, a member of the TNFR superfamily Galibert,L.;Tometsko,M.E.;Anderson,D.M.;Cosman,D.;Dougall,W.C. https://doi.org/10.1074/jbc.273.51.34120
  19. Biochem. Biophys. Res. Commun. v.252 Potential role of cbfal, an essential transcriptional factor for osteoblast differentiation, in osteoclastogenesis, regulation of mRNA expression of osteoclast differentiation factor (ODF) Gao,Y.H.;Shinki,T.;Yuasa,T.;Kataoka-Enomoto,H.;Komori,T.;Suda,T.;Yamaguchi,A. https://doi.org/10.1006/bbrc.1998.9643
  20. Blood v.97 Macrophage inflammatory protein-aalpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand Han,J.H.;Choi,S.J.;Kurihara,N.;Koide,M.;Oba,Y.;Roodman,G.D. https://doi.org/10.1182/blood.V97.11.3349
  21. Nature v.423 Control of osteoblast function and regulation of bone mass Harada,S.;Rodan,G.A. https://doi.org/10.1038/nature01660
  22. Biochem. Biophys. Res. Commun. v.177 Macrophage colony stimulating factor (M-CSF) is essential for osteoclast formation in vitro Hattersley,G.;Owens,J.;Flanagan,A.M.;Chambers,T.J. https://doi.org/10.1016/0006-291X(91)92015-C
  23. Biochem. Biophys. Res. Commun. v.250 Osteoprotegerin production by human osteoblast lineage cells is stimulated by vitamin D, bone morphogenetic protein-2, and cytokines Hofbauer,L.C.;Dunstan,C.R.;Spelsberg,T.C.;Riggs,B.L.;Khosla,S. https://doi.org/10.1006/bbrc.1998.9394
  24. Endocrinology v.140 Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells Hofbauer,L.C.;Khosla,S.;Dunstan,C.R.;Lacey,D.L.;Spelsberg,T.C.;Riggs,B.L. https://doi.org/10.1210/en.140.9.4367
  25. Bone v.25 Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells Hofbauer,L.C.;Lacey,D.L.;Dunstan,C.R.;Spelsberg,T.C.;Riggs,B.L.;Khosla,S. https://doi.org/10.1016/S8756-3282(99)00162-3
  26. J. Clin. Invest. v.101 Interleukin 18 inhibits osteoclast formation via T cell production of granulocyte macrophage colony-stimulating factor Horwood,N.J.;Udagawa,N.;Elliott,J.;Grail,D.;Okamura,H.;Kurimoto,M.;Dunn,A.R.;Martin,T.;Gillespie,M.T. https://doi.org/10.1172/JCI1333
  27. J. Immunol. v.166 IL-12 alone and in synergy with IL-18 inhibits osteoclast formation in vitro Horwood,N.J.;Elliott,J.;Martin,T.J.;Gillespie,M.T.
  28. Nat. Med. v.3 Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2 Iotsova,V.;Caamano,J.;Loy,J.;Yang,Y.;Lewin,A.;Bravo,R. https://doi.org/10.1038/nm1197-1285
  29. J. Dent. Res. v.80 Effects of vascular endothelial growth factor on osteoclast induction during tooth movement in mice Kaku,M.;Kohno,S.;Kawata,T.;Fujita,I.;Tokimasa,C.;Tsutsui,K.;Tanne,K. https://doi.org/10.1177/00220345010800100401
  30. J. Exp. Med. v.192 Regulation of peripheral lymph node genesis by the tumor necrosis factor family member TRANCE Kim,D.;Mebius,R.E.;MacMicking,J.D.;Jung,S.;Cupedo,T.;Castellanos,Y.;Rho,J.;Wong,B.R.;Josien,R.;Kim,N.;Rennert,P.D.;Choi,Y. https://doi.org/10.1084/jem.192.10.1467
  31. Proc. Natl. Acad. Sci. v.97 Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene Kim,N.;Odgren,P.R.;Kim,D.K.;Marks,S.C.Jr.;Choi,Y. https://doi.org/10.1073/pnas.200294797
  32. J. Exp. Med. v.195 A novel member of the leukocyte receptor complex regulates osteoclast differentiation Kim,N.;Takami,M.;Rho,J.;Josien,R.;Choi,Y.
  33. J. Exp. Med. v.173 Congenital osteoclast deficiency in osteopetrotic(op/op) mice is cured by injections of macrophage colony-stimulating factor Kodama,H.;Yamasaki,A.;Nose,M.;Niida,S.;Ohgame,Y.;Abe,M.;Kumegawa,M.;Suda,T. https://doi.org/10.1084/jem.173.1.269
  34. Nature v.402 Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand Kong,Y.Y.;Feige,U.;Sarosi,I.;Bolon,G.;Tafuri,A.;Morony,S.;Capparelli,C.;Li,J.;Elliott,R.;McCabe,S.;Wong,T.;Campagnuolo,G.;Moran,E.;Bogoch,E.R.;Van,G.;Nguyen,L.T.;Ohashi,P.S.;Lacey,D.L.;Fish,E.;Boyle,W.J.;Penninger,J.M. https://doi.org/10.1038/46303
  35. Cell v.93 Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation Lacey,D.L.;Timms,E.;Tan,H.L.;Kelley,M.J.;Dunstan,C.R.;Burgess,T.;Elliott,R.;Colombero,A.;Elliott,G.;Scully,S.;Hsu,H.;Sullivan,J.;Hawking,N.;Davy,E.;Capparelli,C.;Eli,A.;Qian,Y.X.;Kaufman,S.;Sarosi,I.;Shalhoub,V.;Senaldi,G.;Guo,J.;Delaney,J.;Boyle,W.J. https://doi.org/10.1016/S0092-8674(00)81569-X
  36. Blood v.98 FLT3 ligand can substitute for macrophage colony-stimulating factor in support of osteoclast differentiation and function Lean,J.M.;Fuller,K.;Chambers,T.J. https://doi.org/10.1182/blood.V98.9.2707
  37. Endocrinology v.140 Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures, correlation with osteoclast-like cell formation Lee,S.K.;Lorenzo,J.A. https://doi.org/10.1210/en.140.8.3552
  38. J. Biochem. Mol. Biol. v.35 TAK1-dependent activation of AP-1 and c-Jun N-terminal kinase by receptor activator of NF-kappaB Lee,S.W.;Han,S.I.;Kim,H.H.;Lee,Z.H. https://doi.org/10.5483/BMBRep.2002.35.4.371
  39. Endocrinology v.144 Interleukin-7 is a direct inhibitor of in vitro osteoclastogenesis Lee,S.K.;Kalinowski,J.F.;Jastrzebski,S.L.;Puddington,L.;Lorenzo,J.A. https://doi.org/10.1210/en.2002-221057
  40. Nat. Genet. v.23 Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification Li,Y.P.;Chen,W.;Liang,Y.;Li,E.;Stashenko,P. https://doi.org/10.1038/70563
  41. Genes Dev. v.13 TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling Lomaga,M.A.;Yeh,W.C.;Sarosi,I.;Duncan,G.S.;Furlonger,C.;Ho,A.;Morony,S.;Capparelli,C.;Van,G.;Kaufman,S.;van der Heiden,A.;Itie,A.;Wakeham,A.;Khoo,W.;Sasaki,T.;Cao,Z.;Penninger,J.M.;Paige,C.J.;Lacey,D.L.;Dunstan,C.R.;Boyle,W.J.;Goeddel,D.V.;Mak,T.W. https://doi.org/10.1101/gad.13.8.1015
  42. J. Neurosci. v.20 Tumor necrosis factor receptor-associated factor 6 (TRAF6) deficiency results in exencephaly and is required for apoptosis within the developing CNS Lomaga,M.A.;Henderson,J.T.;Elia,A.J.;Robertson,J.;Noyce,R.S.;Yeh,W.C.;Mak,T.W.
  43. J. Immunol. v.170 IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-kappa B ligand/osteoprotegerin balance Lubberts,E.;van den Bersselaar,L.;Oppers-Walgreen,B.;Schwarzengerger,P.;Coenen-de Roo,C.J.;Kolls,J.K.;Joosten,L.A.;van den Berg,W.B.
  44. J. Immunol. v.158 High susceptibility to collagen-induced arthritis in mice lacking IFN-gamma receptors Manoury-Schwartz,B.;Chiocchia,G.;Bessis,N.;Abehsira-Amar,O.;Batteux,F.;Muller,S.;Huang,S.;Boissier,M.C.;Fournier,C.
  45. Blood v.98 Bifurcation of osteoclasts and dendritic cells from common progenitors Miyamoto,T.;Ohneda,O.;Arai,F.;Iwamoto,K.;Okada,S.;Takagi,K.;Anderson,D.M.;Suda,T. https://doi.org/10.1182/blood.V98.8.2544
  46. Biochem. Biophys. Res. Commun. v.247 Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin Mizuno,A.;Amizuka,N.;Irie,K.;Murakami,A.;Fujise,N.;Kanno,T.;Sato,Y.;Nakagawa,N.;Yasuda,H.;Mochizuki,S.;Gomibuchi,T.;Yano,K.;Shima,N.;Washida,N.;Tsuda,E.;Morinaga,T.;Higashio,K.;Ozawa,H. https://doi.org/10.1006/bbrc.1998.8697
  47. Biochem. Biophys. Res. Commun. v.252 Transforming growth factor-beta1 increases mRNA levels of osteoclastogenesis inhibitory factor in osteoblastic/stromal cells and inhibits the survival of murine osteoclast-like cells Murakami,T.;Yamamoto,M.;Ono,K.;Nishikawa,M.;Nagata,N.;Motoyoshi,K.;Akatsu,T. https://doi.org/10.1006/bbrc.1998.9723
  48. Proc. Natl. Acad. Sci. v.99 TRAF6-deficient mice display hypohidrotic ectodermal dysplasia Naito,A.;Yoshida,H.;Nishioka,E.;Satoh,M.;Azuma,S.;Yamamoto,T.;Nishikawa,S.;Inoue,J.
  49. FEBS Lett. v.473 Vascular endothelial growth factor(VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclasts Nakagawa,M.;Kaneda,T.;Arakawa,T.;Morita,S.;Sato,T.;Yomada,T.;Hanada,K.;Kumegawa,M.;Hakeda,Y. https://doi.org/10.1016/S0014-5793(00)01520-9
  50. J. Exp. Med. v.190 Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption Niida,S.;Kaku,M.;Amano,H.;Yoshida,H.;Kataoka,H.;Nishikawa,S.;Tanne,K.;Maeda,N.;Kodama,H. https://doi.org/10.1084/jem.190.2.293
  51. T-cell involvement in osteoclast biology, implications for rheumatoid bone erosion O'Gradaigh,D.;Compston,J.E.
  52. J. Immunol. v.169 IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator on NF-kappaB ligand, osteoprotegerin, and receptor activator of NF-kappaB in mouse calvariae Palmqvist,P.;Persson,E.;Conaway,H.H.;Lerner,U.H.
  53. J. Cell. Biochem. v.49 Expression of cell growth and bone specific genes at single cell resolution during development of bone tissue-like orgarnization in primary osteoblast cultures Pockwinse,S.M.;Wilming,L.G.;Conlon,D.M.;Stein,G.S.;Lian,J.B. https://doi.org/10.1002/jcb.240490315
  54. J. Bone Miner. Res. v.18 Mechanisms of tumor metastasis to the bone, challenges and opportunities Reddi,A.H.;Roodman,D.;Freeman,C.;Mohla,S. https://doi.org/10.1359/jbmr.2003.18.2.190
  55. DNA Cell Biol. v.21 Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis Rho,J.;Altmann,C.R.;Socci,N.D.;Merkov,L.;Kim,N.;So,H.;Lee,O.;Takami,M.;Brivanlou,A.H.;Choi,Y. https://doi.org/10.1089/104454902320308915
  56. Endocr. Rev. v.17 Advances in bone biology, the osteoclast Roodman,G.D.
  57. Exp. Hematol. v.27 Cell biology of the osteoclast Roodman,G.D. https://doi.org/10.1016/S0301-472X(99)00061-2
  58. J. Clin. Oncol. v.19 Biology of osteoclast activation in cancer Roodman,G.D.
  59. Trends Endocrinol. Metab. v.14 Interleukin 7 and estrogen-induced bone loss Ross,F.P. https://doi.org/10.1016/S1043-2760(03)00047-X
  60. Cancer v.97 RANK-Fc, a therapeutic antagonist for RANK-L in myeloma Sordillo,E.M.;Pearse,R.N. https://doi.org/10.1002/cncr.11134
  61. J. Bone Miner. Res. v.17 Hyperparathyroidism, humoral hypercalcemia of malignancy, and the anabolic actions of parathyroid hormone and parathyroid hormone-related protein on the skeleton Stewart,A.F. https://doi.org/10.1359/jbmr.2002.17.5.758
  62. Methods Enzmol. v.282 Role of 1 alpha, 25-dihydroxyvitamin D3 in osteoclast differentiation and function Suda,T.;Jimi,E.;Nakamura,I.;Takahashi,N. https://doi.org/10.1016/S0076-6879(97)82110-6
  63. J. Bone Miner. Res. v.12 Regulation of osteoclast function Suda,T.;Nakamura,I.;Jimi,E.;Takahashi,N. https://doi.org/10.1359/jbmr.1997.12.6.869
  64. Novartis Found. Symp. v.232 The molecular basis of osteoclast differentiation and activation Suda,T.;Kobayashi,K.;Jimi,E.;Udagawa,N.;Takahashi,N. https://doi.org/10.1002/0470846658.ch16
  65. J. Cell. Biochem. v.88 Vitamin D and bone Suda,T.;Ueno,Y.;Fujii,K.;Shinki,T. https://doi.org/10.1002/jcb.10331
  66. Bone v.16 Colony-stimulating factor-1 injections improve but do no cure skeletal sclerosis in osteopetrotic(op) mice Sundquist,K.T.;Cecchini,M.G.;Marks,S.C.Jr.
  67. J. Immunol. v.169 Stimulation by toll-like receptors inhibits osteoclast differentiation Takami,M.;Kim,N.;Rho,J.;Choi,Y.
  68. Nature v.408 T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma Takayanagi,H.;Ogasawara,K.;Hida,S.;Chiba,T.;Murata,S.;Sato,K.;Takaoka,A.;Yokochi,T.;Oda,H.;Tanaka,K.;Nakamura,K.;Taniguchi,T. https://doi.org/10.1038/35046102
  69. Nature v.416 RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta Takayanagi,H.;Kim,S.;Matsuo,K.;Suzuki,H.;Suzuki,T.;Sato,K.;Yokochi,T.;Oda,H.;Nakamura,K.;Ida,N.;Wagner,E.F.;Taniguchi,T. https://doi.org/10.1038/416744a
  70. Arthritis Res. v.4 no.Suppl.3 Signaling crosstalk between RANKL and interferons in osteoclast differentiation Takayanagi,H.;Kim,S.;Taniguchi,T. https://doi.org/10.1186/ar581
  71. Pol. Arch. Med. Wewn. v.105 Osteoimmunology, new area of research on the associations between the immune and bone systems Targonska,M.;Kochanowska,I.;Ostrowski,K.;Gorski,A.
  72. Crit. Rev. Oral Biol. Med. v.12 Involvement of Tlymphocytes in periodontal disease and in direct and indirect induction of bone resorption Taubman,M.A.;Kawai,T. https://doi.org/10.1177/10454411010120020301
  73. Nat. Rev. Genet. v.4 Genetic regulation of osteoclast development and function Teitelbaum,S.L.;Ross,F.P. https://doi.org/10.1038/nrg1122
  74. J. Cell. Biochem. v.59 Molecular mechanisms of bone resorption Teitelbaum,S.L.;Abu-Amer,Y.;Ross,F.P.
  75. Crit. Rev. Oral Biol. Med. v.14 The role of acquired immunity and periodontal disease progression Teng,Y.T. https://doi.org/10.1177/154411130301400402
  76. Annu. Rev. Immunol. v.20 RANK-L and RANK, T cells, bone loss, and mammalian evolution Theill,L.E.;Boyle,W.J.;Penninger,J.M. https://doi.org/10.1146/annurev.immunol.20.100301.064753
  77. Proc. Natl. Acad. Sci. v.100 IL-7 induces bone loss in vivo by induction of receptor activator of nuclear factor kappa B ligand and tumor necrosis factor alpha from T cells Toraldo,G.;Roggia,C.;Qian,W.P.;Pacifici,R.;Weitzmann,M.N. https://doi.org/10.1073/pnas.0136772100
  78. J. Biol. Chem. v.275 Three subunit a isoforms of mouse vacuolar H(+)-ATPase. Preferential expression of the a3 isoform during osteoclast differentiation Toyomura,T.;Oka,T.;Yamaguchi,C.;Wada,Y.;Futai,M. https://doi.org/10.1074/jbc.275.12.8760
  79. J. Exp. Med. v.185 Interleukin-18 (interferon-gamma-inducing factor) is produced by osteoblasts and acts via granulocyte/macrophage colony-stimulating factor and not via interferon-gamma to inhibit osteoclast formation Udagawa,N.;Horwood,N.J.;Elliott,J.;Mackay,A.;Owens,J.;Okamura,H.;Kurimoto,M.;Chambers,T.J.;Martin,T.J.;Gillespie,M.T. https://doi.org/10.1084/jem.185.6.1005
  80. J. Bone Miner. Res. v.9 Characteristics and properties of osteocytes in culture van der Plas,A.;Aarden,E.M.;Feijen,J.H.;de Boer,A.H.;Wiltink,A.;Alblas,M.J.;de Leij,L.;Nijweide,P.J. https://doi.org/10.1002/jbmr.5650091105
  81. J. Immunol. v.158 Accelerated collagen-induced arthritis in IFN-gamma receptor-deficient mice Vermeire,K.;Heremans,H.;Vandeputte,M.;Huang,S.;Billiau,A.;Matthys,P.
  82. Cytokine Growth Factor Rev. v.14 Biology of the TRANCE axis Walsh,M.C.;Choi,Y. https://doi.org/10.1016/S1359-6101(03)00027-3
  83. J. Biol. Chem. v.277 Interleukin-4 reversibly inhibits osteoclastogenesis via inhibition of NF-kappa B and mitogen-activated protein kinase signaling Wei,S.;Wang,M.W.;Teitelbaum,S.L.;Ross,F.P. https://doi.org/10.1074/jbc.M104957200
  84. Oral Dis. v.2 Osteoclast activation in inflammatory periodontal diseases Wiebe,S.H.;Hafezi,M.;Sandhu,H.S.;Sims,S.M.;Dixon,S.J. https://doi.org/10.1111/j.1601-0825.1996.tb00218.x
  85. J. Biol. Chem. v.272 TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells Wong,B.R.;Rho,J.;Arron,J.;Robinson,E.;Orlinick,J.;Chao,M.;Kalachikov,S.;Cayani,E.;Bartlett,F.S.3rd.;Frankel,W.N.;Lee,S.Y.;Choi,Y. https://doi.org/10.1074/jbc.272.40.25190
  86. J. Biol. Chem. v.273 The TRAF Family of signal transducers mediates NF-kappaB activation by the TRANCE receptor Wong,B.R.;Josien,R.;Lee,S.Y.;Vologodskaia,M.;Steinman,R.M.;Choi,Y. https://doi.org/10.1074/jbc.273.43.28355
  87. Mol. Cell v.4 TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Wong,B.R.;Besser,D.;Kim,N.;Arron,J.R.;Vologodakaia,M.;Hanafusa,H.;Choi,Y. https://doi.org/10.1016/S1097-2765(00)80232-4
  88. Proc. Natl. Acad. Sci. v.95 Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is indentical to TRANCE/RANKL Yasuda,H.;Shima,N.;Nakagawa,N.;Yamaguchi,K.;Kinosaki,M.;Mochizuki,S.;Tomoyasu,A.;Yano,K.;Goto,M.;Murakami,A.;Tsuda,E.;Morinaga,T.;Higashio,K.;Udagawa,N.;Takahashi,N.;Suda,T. https://doi.org/10.1073/pnas.95.7.3597
  89. Nature v.345 The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene Yoshida,H.;Hayashi,S.;Kunisada,T.;Ogawa,M.;Nishikawa,S.;Okamura,H.;Sudo,T.;Shultz,L.D. https://doi.org/10.1038/345442a0
  90. J. Bone Miner. Res. v.16 Cathepsin K, osteoclastic resorption, and osteoporosis therapy Zaidi,M.;Troen,B.;Moonga,B.S.;Abe,E. https://doi.org/10.1359/jbmr.2001.16.10.1747
  91. J. Bone Miner. Res. v.18 Osteoclastogenesis, bone resorption, and osteoclast-based therapeutics Zaidi,M.;Blair,H.C.;Moonga,B.S.;Abe,E.;Huang,C.L. https://doi.org/10.1359/jbmr.2003.18.4.599
  92. Nature v.423 The genetic basis for skeletal diseases Zelzer,E.;Olsen,B.R. https://doi.org/10.1038/nature01659