기/액 향류흐름 유동층에서 기포특성의 축방향 변화 및 분포

Axial Variation and Distribution of Bubble Properties in Gas/Liquid Countercurrent Fluidized Beds

손성모;윤정호;김현태;송평섭;강용;김상돈
Son, Sung-Mo;Yun, Jeong-Ho;Kim, Hyun-Tae;Song, Pyung-Seob;Kang, Yong;Kim, Sang-Done

  • 발행 : 2004.04.30

초록

밀도가 낮은 입자를 유동 입자로 사용하고 직경이 0.152 m, 높이가 2.5 m인 기체-액체 향류 흐름 유동층에서 기포의 축방향 분산 및 분포 특성에 대하여 고찰하였다. 유동층에서 상승하는 기포의 크기, 상승속도와 빈도수 등을 이중 전기 저항 탐침법을 이용하여 측정하였다. 기포의 축방향 분산과 분포 특성은 각 특성들의 확률밀도함수에 의해 효과적으로 나타낼 수 있었으며, 기포 특성의 평균값을 확률 밀도함수로부터 결정하였다. 기포 크기의 평균값과 분포는 기체와 액체 유속뿐만 아니라, 분산판으로부터 축방향 높이의 증가에 따라 현저히 증가하였다. 기포의 상승 속도와 분포 또한 기체와 액체 유속뿐만 아니라 축방향 높이의 증가에 따라 매우 증가하는 경향을 나타내었다. 그러나 상승하는 기포의 빈도수는 축방향 높이가 증가함에 따라 감소하였다. 기포의 크기, 상승 속도와 빈도수 같은 기포 특성들은 본 실험의 운전 변수들인 축방향 위치, 기체와 액체의 유속과 입자의 밀도 등의 상관식으로 나타낼 수 있었다.

Axial variation and distribution of bubble properties were investigated in a gas/liquid countercurrent fluidized beds ($0.152\;m{\times}2.5\;m$) with relatively low-density particles. Chord length, rising velocity and frequency of rising bubbles in the beds were measured and determined by means of dual resistivity probe method. The axial variation and distribution of bubble properties were well visualized by probability number density function, by which the mean value of bubble properties were determined. The mean value and distribution of bubble chord length increased profoundly with increasing axial height above the distributor as well as gas and liquid velocities. The rising velocity and its distribution of bubble also increased consider ably with increasing the axial height as well as gas and liquid velocities. But, the frequency of rising bubbles decreased with increasing the axial height. The bubble properties such as bubble chord length, rising velocity and frequency were well correlated in terms of the axial position, gas and liquid velocities, and particle density within this experimental conditions.

키워드

참고문헌

  1. HWAHAK KONGHAK v.39 no.5 Heat Transfer Characteristics of Three-Phase Inverse Fluidized Beds Park, H.Y.;Kim, S.W.;Cho, Y.J.;Kang, Y.;Kim, S.D.
  2. I&EC Research v.21 Heat transfer and Hydrodynamics in Two and Three-Phase Inverse Fluidized Beds Cho, Y.J.;Park, H.Y.;Kim, S.W.;Kang, Y.;Kim, S.D.
  3. AIChE Journal v.42 no.7 Hydrodynamic Characteristics of a Three-Phase Inverse Fluidized-Bed Column Ibrahaim, Y.A.A.;Breins, C.L.;Margaritis,A.;Bergongnou, M.A. https://doi.org/10.1002/aic.690420710
  4. Int. Chem. Eng. v.32 Contribution to the Study of an Inverse Three-Phase Fluidized Bed Operating Countercurrently Legile, P.;Menard, G.;Laurent, C.;Thomas, D.;Bernis, A.
  5. Water Research v.32 no.12 Anaerobic Digestion of Wine Distillery Wastewater in Down-Flow Fluidized Bed Garcia-Calderon, D.;Buffiere, P.;Moletta, R.;Elmaleh, S. https://doi.org/10.1016/S0043-1354(98)00134-1
  6. Chemical Engineering Science v.52 no.21 Heat and Mass Transfer in Three-phase Fluidized-bed Reactors-an Overview Kim, S.D.;Kang, Y. https://doi.org/10.1016/S0009-2509(97)00269-8
  7. Industrial & Engineering Chemistry Research v.29 no.1 Gas-Liquid Mass Transfer in a Three-Phase Fluidized Bed Containing Low Density Particles Tang, W.T.;Fan, L.S. https://doi.org/10.1021/ie00097a020
  8. Chemical Engineering Science v.38 no.8 Hydrodynamics of Constrained Inverse Fluidization and Semifluidization in a Gas-Liquid-Solid System Chern, S.H.;Muroyama, K.;Fan, L.S. https://doi.org/10.1016/0009-2509(83)80038-4
  9. Korean Journal of Chemical Engineering v.16 no.5 Hydrodynamics Study of Two Different Inverse Fluidized Reactors for the Application of Wastewater Treatment Choi, H.S.;Shim, M.S. https://doi.org/10.1007/BF02708150
  10. Chemical Engineering Science v.54 no.9 Some Hydrodynamic Characteristics of Inverse Three Phase Fluidized-Bed Reactors Buffiere, P.;Moletta, R. https://doi.org/10.1016/S0009-2509(98)00436-9
  11. Bioprocess Engineering v.23 no.5 Gas-Liquid Mass Transfer in Bioreactor with Three-Phase Inverse Fluidized Bed Nikolov, V.;Farag, I.;Nikov, I. https://doi.org/10.1007/s004499900124
  12. Korean Journal of Chemical Engineering v.17 no.6 Hydrodynamic Transition from Fixed to Fully Fluidized Beds for Three-Phase Inverse Fluidization Lee, D.H.;Epstein, N.;Grace, J.R. https://doi.org/10.1007/BF02699118
  13. AIChE Journal v.38 no.12 Bed Expansion of Liquid-Solid Inverse Fluidization Karamanev, D.G.;Nikolov, L.N. https://doi.org/10.1002/aic.690381208
  14. Chemical Engineering Science v.55 no.2 Bubble Properties and Pressure Fluctuations in Pressurized Bubble Columns Kang, Y.;Cho, Y.J.;Woo, K.J.;Kim, K.I.;Kim, S.D. https://doi.org/10.1016/S0009-2509(99)00336-X
  15. Chemical Engineering Science v.56 no.21 Heat Transfer and Bubble Properties in Three-Phase Circulating Fluidized Beds Cho, Y.J.;Kim, S.J.;Nam, S.H.;Kang, Y.;Kim, S.D. https://doi.org/10.1016/S0009-2509(01)00256-1
  16. Biotech. Bioeng. v.26 Oxygen Mass Transfer into Aerated CMC Solutions in a Bubble Column Deckwer, W.D.;Nguyen-Tien, K.;Schumpe, A.;Serpemen, Y.
  17. Can. J. Chem. Eng. v.81 Liquid Dispersion and Gas-Liquid Mass Transfer in Three-Phase Inverse Fluidized Beds Kim, S.W.;Kim, H.T.;Song, P.S.;Kang, Y.;Kim, S.D. https://doi.org/10.1002/cjce.5450810338