Root Adaptation of Pinus densiflora Sieb. et Zucc. in the Differently Acidified Forest Soil in Korea

土壤 酸性化에 따른 소나무(Pinus densiflora Sieb. et Zucc.)의 뿌리 適應性에 關한 硏究

Lee, Do-Hyung

  • Published : 2004.03.31

Abstract

This study was conducted to investigate the relationship of development of root and soil condition and also to elucidate mechanical and physical stability according to distribution of roots of Pinus densiflora S. et Z. natural stands of 35 to 45 years of age with different soil pH condition. The average tree age in Gyeongsan stand was 42 years old which was 5 years older than that of Uljin stand, however average tree height in Gyeongsan stand(11.7m) was lower than that of Uljin stand(18.6m). In the root structure, remarkably different root pattern was shown between the two stands. Uljin stand showed longer in the total length of root than Gyeongsan stand and the ratio between length of horizontal and vertical root was almost same in Uljin stand, while Gyeongsan stand showed comparatively higher value in the horizontal roots. In total weight of root, Uljin stand showed much higher value(75.13kg) than Gyeongsan stand (41.28kg) and the amount of thin root was also showed higher value in Uljin stand(7.34kg) than Gyeongsan stand(1.23kg). In root development by soil depth, most of roots developed much more deeply into soil in Uljin stand than in Gyeongsan stand. As a result of analysis of the growth ring of the root, Uljin stand showed better root growth than that of Gyeongsan stand. In Gyeongsan stand having pH value(4.45), much modified roots, the abnormal root branch form such as fork, gun and rake type were appeared and it seemed to be attributed by the soil acidification. In conclusion, the root development pattern of Pinus densiflora is likely adapted to the soil condition especially acidification of soil and this caused in various modified roots. The pattern of root structure in the acidified soil was being adapted from well developed vertical root system to horizontal root system with small number of roots and these modified root structure will result in the reduction of growth and the resistance against wind, drought and pests of Pinus densiflora stand.

Keywords

References

  1. 이도형. 2000. 토양산성화정도에 따른 독일가문비나무(Picea abies [L.] Karst) 뿌리구조의 특성에 관한 연구. 한국임학회지 89(5):677-684
  2. 이도형. 2001. 토양산성화정도에 따른 독일가문비나무(Picea abies [L.] Karst) 뿌리발달과 분지구조에 관한 연구. 한국임학회지 90(4):458-464
  3. Adams, M. B. 1997. Acidic deposition and sustainable forest management in the central Appalachians, USA. Forest Ecology and Management 122:17 28 https://doi.org/10.1016/S0378-1127(99)00029-8
  4. Arnold, G. 1992. Soil acidification as caused by the nitrogen uptake pattern of scots pine (Pinus sylvestris). Plant and Soil 142(1):41-51
  5. Arnold, G. 1993. Soil acidification and imbalanced nutrient availability in scots pine forest soils in the Netherlands. Wageningen (Netherlands), Landbouwuniversiteit. 139p
  6. Billett, M.E., F. Parker Jewis, E. A. Fitzpatrick. and M. S. Cresser. 1990. Forest soil chemical changes between 1945/50 and 1987. Journal of Soil Science 41:133 145 https://doi.org/10.1111/j.1365-2389.1990.tb00051.x
  7. Drexhage, M. and F. Gruber. 1998. Architecture of the skeletal root system of 40 year old Picea abies on strongly acidified soil in the Harz Mountain(Germany). Canadian Journal of Forest Research 28:13 22 https://doi.org/10.1139/cjfr-28-1-13
  8. Eichhorn, J. 1987. Vergleichende Untersuchungen von Feinwurzelsystemen bei unterschiedlich gesch$\ddot{a}$digten Altfichten(Picea abies Karst.) Diss. G$\ddot{o}$ttingen. 1 154
  9. Farrell, E.P., I. Nilsson, C. O. Tamm. and G. Wiklander. 1980. Effects of artificial with sulphuric acid on soil chemistry in a scots pine forest. International conference on the ecological impact of acid precipitation. Sandefjord Norway) p 11-14
  10. Fenger, K.H. 1997. Biogeochemistry of magnesium in forest ecosystems. In:Magnesium Deficiency in Forest Ecosystems. Edition R. F. Huttl and W. Schaaf. pp 67 99. Kluwer Academic Publishers, Dordrecht, The Netherlands
  11. Georg, J., M. H. W. Drexhage., E. Fritz., B. Fritz,, D. H. Schella., F. Lee., J. Gruber., M. Heimann., J. Kuhr., S. Schmidt., R. Schmidt., Zimmermann, and D. L. Godbold. 2001. Does soil acidity reduce subsoil rooting in Norway spruce(Picea abies). Plant and Soil 237:91 108 https://doi.org/10.1023/A:1013305712465
  12. Godbold, D. L. and J. Georg. 1998. Aluminium accumulation in root cell walls coincides with inhibition of root growth but not with inhibition of magnesium uptake in Norway spruce. Physiologia Plantarum 102(4):553 560 https://doi.org/10.1034/j.1399-3054.1998.1020410.x
  13. Gruber, F. 1992. Dynamik und Regeneration der Geh$\ddot{o}$lze:Baumarchitektur auf $\ddot{o}$kologisch dynamischer Grundlage und zur Bioindikation am Beispiele der Europ$\ddot{a}$ischen Fichten, Wei$\beta$tanne, Douglasie und Europ$\ddot{a}$ischen Larch. Berichte des Forschungszentrums Wald$\ddot{o}$kosysteme der Universit$\ddot{a}$t G$\ddot{o}$ttingen, Reihe A, Band 86:1 420
  14. Gruber, F. 1994. Morphology of coniferous trees:possible effects of soil acidification on the morphology of Norway spruce and Silver fir. In:Effects of Acid Rain in Forest Processes, Wiley Liss, New York 265 324
  15. Guderian, K., A. Klumpp and G. Klumpp. 1989. Reaktionen von Baumarten auf Luftschadstoffe unter kontrollierten Bedingungen. Internationalle Kongress. Waldschadensforschung Vortrage. Kernforschungszentrum Karsruhe. Band 1:445-478
  16. Hallb$\ddot{a}$cken, L. 1992. Long term changes of base cation pools in soil and biomass in beech and a spruce forest of southern Sweden. Zeitschrift fur Pflanzenernährung und Bodenkunde 155:51-60 https://doi.org/10.1002/jpln.19921550111
  17. H$\ddot{u}$ttl, R. F. and H. W. Z$\ddot{o}$ttl. 1986. Diagnostische D$\ddot{u}$ngungsversuche in gesch$\ddot{a}$digten Nadelbaumbest$\ddot{a}$nden S$\ddot{u}$dwestdeutschlands. IMA Querschnittsseminar 'Restabilisierungsmassnahmen (D$\ddot{u}$ngung)' in Karlsruhe. pp 16-17
  18. H$\ddot{u}$ttermann, A. 1983. Auswirkungen s$\ddot{a}$urer Deposition auf die Physiologie des Wurzelraumes von Wald$\ddot{o}$kosystemen. Allegemeine Forestzeitschrift pp 663-664
  19. IIvesniemi, H. and M. Holmberg. 1992. A comparison of measured and calculated effects of artificial acid rain on cations in soil solution and exchange sites. Scandinavian Journal of Forest Research(Sweden) 7(4):445-455
  20. K$\ddot{o}$stler, J. N., E. Br$\ddot{u}$ckner. and H. Bibelriether. 1968. Die Wurzel der Waldb$\ddot{a}$ume, Verlag Paul Parey, Hamburg, Berlin. pp 1-55
  21. Krause, W. H. M. and E. Matzner. 1985. Forest Decline in Europe:possible cause and etiology. Paper presented at the International Symposium on Acid Precipitation, Muskoka Conference '85, Canada
  22. Ledig, F. T., F. H. Borman and K. F. Wenger. 1970. The distribution of dry matter growth between shoot and roots in Loblolly Pine. Botanical Gazette 131(4):349-359 https://doi.org/10.1086/336552
  23. Lee, D. H. 1998. Architektur der Wurzelsysteme von Fichten(Picea abies [L.] Karst.) auf unterschiedlich versauerten Standorten. Berichte des Forschungszentrums Wald$\ddot{o}$kosysteme der Universit$\ddot{a}$t G$\ddot{o}$ttingen, Reihe A, Band 153:1-147
  24. Matzner, E. and D. Murach. 1995. Soil changes induced by air pollutant deposition and their implication for forests in Central Europe. Water, Air and Soil Pollution 85:63-76 https://doi.org/10.1007/BF00483689
  25. Puhe, J. 1994. Die Wurzelentwicklung der Fichte(Picea abies [L.] Karst.) bei unterschiedlichen chemischen Bodenbedingungen. Bericht,e des Forschungszentrums Wald$\ddot{o}$kosysteme der Universit$\ddot{a}$t G$\ddot{o}$ttingen, Reihe A, Band 108:1-128
  26. Ulrich, B. 1994. Nutrient and acid base budget of central European forest ecosystems. In Effects of Acid Rain on Forest Processes. Editions D. L. Godbold and A. Hüttermann. pp 1-50. Wiley Liss, New York
  27. Ulrich, B. 1994. Nutrient and acid base budget of central European forest ecosystems. In Effects of Acid Rain on Forest Processes. Editions D. L. Godbold and A. Huttermann. pp 1-50. Wiley Liss, New York
  28. Ulrika J., R. Ulrika, T. Gunnar. and N. Bengt. 2003. Acidification nduced chemical changes in coniferous forest soils in southern Sweden 1988 1999. Environmental Pollution 123(2003):75-3
  29. Visser, P. H. B. and N. van. Breemen. 1995. Effects of water and nutrient application in a scots pine stand to tree growth and nutrient cycling. Plant and Soil 173(2):299-310 https://doi.org/10.1007/BF00011468
  30. Wesselink, L. G., K. J. Meiwes, E. Matzner. and A. Stein. 1995. Long term changes in water and soil chemistry in spruce and beech forest. Solling, Germany. Environmental Science and Technology 29:51-58 https://doi.org/10.1021/es00001a006