Estimating Above- and Below-ground Biomass fromDiameter of Breast Height and Height for the Pinus densiflora Sieb. et Zucc

胸高直徑과 樹高에 의한 소나무(Pinus densiflora S. et Z.)의 地上部와 地下部 生體量 推定

Lee, Do-Hyung

  • Published : 2004.09.30

Abstract

This study was conducted to elucidate the relationship between the root structure and the crown structure of Pinus densiflora S. et Z., and thereafter to obtain the regression equation for the estimation of relative root and needle biomass using the tree height and diameter of breast height(DBH) without measurement of root and needle biomass. The study sites was Gyeongsan, Ulzin and Kyeongju stands located in south eastern part of Korea. Five dominant or co-dominant trees of 25 to 45 year-old were selected in each site and tree height, diameter of breast height, tree age, weight of total needle and branch, cross section and sapwood area at breast height were measured for biomass of above ground part. And also for biomass of below ground part, the length of root, the number of root, the weight of root, the cross section area of root etc. by dividing the horizontal and vertical roots were measured. The significantly correlation was shown between the biomass of most of variables of above ground parts and those of below ground parts, and the biomass of above- and ground parts was not significantly correlated with the age of tree. The regression equation for the diameter of breast height to the total weight of root was Y=-9.39+2.80X and decision coefficient was 0.67 and also to the total weight of needle, regression equation was Y=-16.52+ 1.79X and decision coefficient was 0.86. The regression equation of the tree height to the weight of horizontal root was Y=-5.54+1.00X(r2=0.71) and to the total weight of needle, regression equation was Y=-23.00+3.41X(r2=0.83). The weight of total branches and needles, and the sapwood area at breast height of above ground parts showed highly positive relationship with below ground biomass. The results obtained from this study can be used to the estimating of biomass of below ground using variables of above ground such as DBH and tree height of the 25 to 45 year-old Pinus densiflora stands

Keywords

References

  1. 이도형. 2000. 토양산성화정도에 따른 독일가문비나무(Picea abies [L.] Karst) 뿌리구조의 특성에 관한 연구. 한국임학회지 89(5):677-684
  2. 이도형. 2001. 독일가문비나무(Picea abies [L.] Karst)의 지상부와 지하부 생체량에 관한 연구:흉고직경에 의한 뿌리 생체량 추정. 한국임학회지 90(3):338-345
  3. 이도형. 2004. 토양산성화에 따른 소나무(Pinus densiflora Sieb. et Zucc.)의 뿌리 적응성에 관한 연구. 한국임학회지 93(1):51-59
  4. 이우균. 1996. 강원도지역 소나무 임분 및 일반 수고-흉고직경곡선 모델. 산림경제연구. 4(2):66-78
  5. Bartelink, H. H. 1998. A model of dry matter partitioning in trees. Tree Physiology 18:91-101 https://doi.org/10.1093/treephys/18.2.91
  6. Bartelink, H. H. 2000. A growth model for mixed forest stands. Forestry Ecology Management 134:29-43 https://doi.org/10.1016/S0378-1127(99)00243-1
  7. Canadell, J. and F. Roda. 1991. Root biomass of Quercus ilex in a montane Mediterranean forest. Canadian Journal of Forest Research 21:1771- 1778 https://doi.org/10.1139/x91-245
  8. Carlson, W. C. and C. A. Harrington. 1987. Cross- sectional area relationships in root systems of loblolly and short-leaf pine. Canadian Journal of Forest Research 17:556-558 https://doi.org/10.1139/x87-092
  9. Drexhage, M and F. Colin. 2001. Estimating root system biomass from breast-height diameters. Forestry 74(5):491-497 https://doi.org/10.1093/forestry/74.5.491
  10. Drexhage, M. and F. Gruber. 1999. Above- and below stump relationships for Picea abies - estimating root system biomass from breast-height diameter. Scanadinavian Journal of Forest Research 14:328-333 https://doi.org/10.1080/02827589950152647
  11. Gruber, F. 1992. Dynamik und Regeneration der Gehölze. Berichte des Forschungszentrums Waldökosysteme Göttingen, Series A, Vol. 86 I, pp.420
  12. Fogel, R. and G. Hunt. 1983. Contribution of mycorrhizae and soil fungi to nutrient cycling in a Douglas-fir ecosystem. Canadian Journal of Forest Research 13:219-232 https://doi.org/10.1139/x83-031
  13. Kapeluck, P. R. and D. H. Van Lear. 1995. A technique for estimating below-stump biomass of mature loblolly pine plantations. Canadian Journal of Forest Research 25:355-360 https://doi.org/10.1139/x95-039
  14. Keyes M. R. and C. C. Grier, 1981. Below- and above-ground biomass and net production in two contrasting Douglas fir stands. Canadian Journal of Forest Research 11:599-605 https://doi.org/10.1139/x81-082
  15. Klepper, B. 1991. Root-Shoot Relationships. Plant Roots- The Hidden Half, Eds. Y. Waisel, A. Eshel, U. Kafkafi. New York. 265-286
  16. Knigge, W., H. Asmutat. and W. F. Weiss. 1984. Untersuchungen der Holzeigenschaften von Fichten aus immissionsexponierten Beständen im Hils. Berichte des Forschz. Waldökosysteme/Waldsterben der Universität Göttingen, Band. 2:129-150
  17. Köstler, J. N., E. Brückner and E. Bibelriether. 1968. Die Wurzeln der Waldbäume. Verlag Paul Parey, Hamburg, Germany, pp.284
  18. Kuiper, L. C. and M. P. Coutts, 1992. Spatial disposition and extension of the structural root system of Douglas-fir. Forestry Ecology Management 47:111-125 https://doi.org/10.1016/0378-1127(92)90269-F
  19. Kurz W. A., S. J. Beukema. and M. J. Apps. 1996. Estimation of root biomass and dynamics for the carbon budget model of the Canadian Forest sector. Canadian Journal of Forest Research 26:1973-1979 https://doi.org/10.1139/x26-223
  20. Lacointe, A. 2000. Carbon allocation among tree organs:a review of basic processes and represen- tation in functional-structural tree models. Annals Forest Science 57:521-533 https://doi.org/10.1051/forest:2000139
  21. Laiho, R. and L. Finer, 1996. Changes in root biomass after water-level drawdown on pine mires in southern Finland. Scanadinavian Journal of Forest Research 11:251-260 https://doi.org/10.1080/02827589609382934
  22. Lebaube, S., N. Le Goff, J. M. Ottorini. and A. Granier. 2000. Carbon balance and tree growth in a Fagus sylvatica stand. Annals Forest Science 57:49-61 https://doi.org/10.1051/forest:2000100
  23. Le Goff, N. and J. M. Ottorini. 2001. Root biomass and biomass increment in a beech(Fagus sylvatica L.) stand in North-East france. Annals Forest Science 58:1-13 https://doi.org/10.1051/forest:2001104
  24. Pellinen, P. 1986. Biomasseuntersuchungen im Kalkbuchenwald. Dissertation Forstwissenschaftlicher Fachbereich, Universität Göttingen, pp.145
  25. Persson, H. 1983. The distribution and produc- tivity of fine roots in boreal forests. Plant and Soil 71:87-101 https://doi.org/10.1007/BF02182644
  26. Röhrig, E. 1966. Die Wurzelentwicklung der Waldbäume in Abhängigkeit von den Ökologischen Verhältnissen. Forstarchiv. 34:217-229, 237-249
  27. Santantonio, D., Hermann, R. K. and W. S. Overton. 1977. Root biomass studies in forest ecosystems. Pedobiologia. 15:1-31
  28. Santantonio, D. 1990. Modeling growth and pro- duction of tree roots. In Dixon, R. K., Meldah, R. S., Ruark G. A. and W. G. Warren. (editors). Process Modeling of Forest Growth Responses to Environmental Stress, Timber Press, Portland. pp. 124-141
  29. SAS Institute Inc.. 1989. SAS/STAT User's Guide, version 6, 4th edition, volume 2. SAS Institute Inc., USA. pp.846
  30. Shinozaki, K., K. Yoda, K. Hozumi. and T. Kira 1964. A quantitative analysis of plant form - the pipe model theory. I. Basic analysis. Japanese Journal of Ecology 143:97-105
  31. Son, Y., J. W. Hwang., Z. S. Kim., W. K. Lee. and J. S. Kim. 2001. Allometry and biomass of Korean pine(Pinus densiflora) in central Korea. Bioresource Technology 78(2001):251-255 https://doi.org/10.1016/S0960-8524(01)00012-8
  32. Thies, W. G. and P. G. Cunningham. 1996. Estimating large-root biomass from stump and breast-height diameters for Douglas-fir in western Oregon. Canadian Journal of Forest Research 26:237-243 https://doi.org/10.1139/x26-027
  33. Watson, A. and C. O'Loughlin. 1990. Structural root morphology and biomass of tree age-classes of Pinus radiata. New Zealand Journal of Forestry Science 20:97-110