Microbiological Production and Herbicidal Mechanism of $\delta$-Aminolevulinic Acid as a Tetrapyrrole-Dependent Photodynamic Herbicide

Tetrapyrrole 의존형 광활성 제초제 $\delta$-Aminolevulinic Acid의 미생물학적 생산 및 제초기작

Chon, Sang-Uk;Kuk, Yong-In;Guh, Ja-Ock
천상욱;국용인;구자옥

  • Published : 20040000

Abstract

$\delta$-Aminolevulinic acid(ALA) has been well known as an intermediate for the biosynthesis of tetrapyrroles such as chlorophyll, heme, bacteriochlorophyll, and vitamin B12 analogues in human, plants, animals, and microorganisms. Recently, ALA has received great attention as a new biodegradable pesticide that is inhibitory to weeds but not harmful to crops, animals, and human, and as a prodrug for photodynamic diagnosis and therapy of cancer. In addition, ALA has been reported to promote the growth and yield of rice, corn, kidney bean, potato, garlic and Vigna species at low concentrations, and to improve salt tolerance of cotton seedlings. ALA is synthesized intracellularly from glycine and succinate by ALA synthase(ALAS) in human, animals and microorganisms, not plants. However, ALA dehydratase(ALAD) catalyzes the condensation of two molecules of ALA into porphobilinogen. To enhance the accumulation of ALA in the biological production, levulinic acid as a competitive inhibitor of ALAD in tetrapyrrole biosynthetic pathway should be added to the culture medium. ALA is very expensive because it is usually synthesized chemically via complex processes. Therefore, biological production using microorganisms has been suggested as an inexpensive way to produce ALA. It has been well known that photosynthetic Rhodospirillaceae such as mainly Rhodospirillum, Rhodobacter, and Rhodopseudomonas species can extracellularly excrete ALA. Most recently, ALA was produced from the transgenic E. coli that overexpressed ALAS by inserting a hemA gene from other microorganism. ALA was named as a tetrapyrrole-dependent photodynamic herbicides that force green plants to accumulate undesirable amount of metabolic intermediates of the chlorophyll and heme metabolic pathway in darkness. In the light, the accumulated tetrapyrroles induce the formation of singlet oxygen that kills the treated plants by oxidation of their cellular membranes as in the action of diphenyl ether herbicides. Development of ALA as a new herbicide involves the joint utilization with activators of the chlorophyll biosynthetic pathway, such as 2,2-dipyridyl. During the subsequent light period the accumulated tetrapyrroles act as potent photodynamic sensitizers, which in turn results in the death of susceptible plants

Keywords

References

  1. 민나영. 2001. Rhodopseudomonas sphaeroides를 이용한 5-aminolevulinic acid 생산. 전남대학교 석사학위논문 pp. 1-52
  2. 이혜주. 1995. 5-Aminolevulinic acid를 생성하는 광합성 세균의 분리, 동정. Bull. Basic Sci. Dong-A Univ. 12:101-118
  3. Beale, S. I. and P. A. Castelfranco. 1974. The biosynthesis of 5-aminolevulinic acid in higher plants. II. Formation of 5-amino[14C]levulinic acid for labelled precursors in greening plant tissues. Plant Physiol. 53:291-296 https://doi.org/10.1104/pp.53.2.291
  4. Beale, S. I., M. H. Gold, and S. Granick. 1979. Chemical synthesis of 4,5-dioxovaleric acid and its non-enzymatic transamination to 5-aminolevulinic acid. Phytochemistry. 18:441-444 https://doi.org/10.1016/S0031-9422(00)81884-1
  5. Belanger, F. C., J. X. Duggan, and C. A. Rebeiz. 1982. Chloroplast biogenesis. Identification of chlorophyll a (E458F674) as a divinyl protochloro- phyllide a. J. Biol. Chem. 257:4849-4858
  6. Carey, E. E. and C. A. Rebeiz. 1985. Chloroplast biogenesis 49. Differences among angiosperms in the biosysnthesis and accumulation of divinyl and monovinyl protochlorophyllide during photoperiodic greening. Plant Physiol. 79:1-6 https://doi.org/10.1104/pp.79.1.1
  7. Carey, E. E., B. C. Tripathy and C. A. Rebeiz. 1985. Chloroplast biogenesis 51. Modulation of monovinyl and divinyl protochlorophyllide biosynthesis by light and darkness in vitro. Plant Physiol. 79:1059-1063 https://doi.org/10.1104/pp.79.4.1059
  8. Chen, J., G. W. Miller, and J. Y. Takemoto. 1981. Biosynthesis of 5-aminolevulinic acid in Rhodopseudomonas sphaeroides. Arch. of Biochem. Biophys. 208:221-228 https://doi.org/10.1016/0003-9861(81)90143-0
  9. Choi, C., B. S. Hong, H. C. Sung, H. S. Lee, and J. H. Kim. 1999. Optimization of extra-cellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene of Bradyrhizobium japonicum. Biotechnol. Lett. 21:551-554 https://doi.org/10.1023/A:1005520007230
  10. Dailey, H. A. 1990. Biosynthesis of heme and chlorophylls. McGraw-Hill Pub. Co. New York, USA, 594 p
  11. Dougherty, T. J. 1987. Photosensitizers: Theraphy and detection of malignant tumors. Phochem. Photobiol. 45:789
  12. Duggan, J. and M. Gassman. 1974. Induction of porphyrin synthesis in etiolated bean leaves by chelators of iron. Plant Physiol. 53:206-215 https://doi.org/10.1104/pp.53.2.206
  13. Germeroth, L., F. Lottspeich, B. Robert, and H. Michel. 1993. Unexpected similarities of the B800-850 light harvesting complex from Rhodospirillum molischianum to the B870 light-harvesting compleses from other purple photosynthetic bacteria. Biochemistry 32:5615- 5621 https://doi.org/10.1021/bi00072a017
  14. Hagemann, G. E., N. Gadon, A. Garcia, G. Drews, and M. H. Tadros. 1995. The light-harvesting complex Ⅱ(B800-850) of Rhodobacter sulfidophilus: Characterization and formation under different growth conditions. FEMS Microbiol. Lett. 126:7-12 https://doi.org/10.1111/j.1574-6968.1995.tb07382.x
  15. Hopf, F. R. and D. G. Whitten. 1978. The porphyrins. in D. Dolphin. ed. Vol 2. Academic Press, New York, pp 161-195
  16. Hotta, Y., T. Tanaka, H. Takaoka, Y. Takeuchi, and M. Konnai. 1997a. New physiological effects of 5-aminolevulinic acid in plants: The increase of photosynthesis, chlorophyll content, and plant growth. Biosci. Biotechnol. Biochem. 61:2025-2028 https://doi.org/10.1271/bbb.61.2025
  17. Hotta, Y., T. Tanaka, H. Takaoka, Y. Takeuchi, and M. Konnai. 1997b. Promotive effect of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regul. 22:109-114 https://doi.org/10.1023/A:1005883930727
  18. Hua, Z., S. L. Gibson, T. H. Foster, and R. Hiff. 1995. Effectiveness of delta-aminolevulinic acid- induced protoporphyrin as a photosensitizer for photodynamic theraphy in vivo. Cancer Res. 55:1723-1731
  19. Ioannides, J. M. 1989. Evolutionary study of the greening group affiliation of green plants. MS Thesis, 62 p. University of Illinois, Urbana, IL, USA
  20. Kipe-Nolt, J. A. and S. E., Steven Jr. 1980. Biosynthesis of 5-aminolevulinic acid from glutamateinAgmenellumquadruplicatum.65:126-128 https://doi.org/10.1104/pp.65.1.126
  21. Mariet, J., V. Werf, and J. Zeikus. 1996. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides heme A gene. Environ. Microbiol. J. Cancer 59:239-247
  22. Matsumoto, H., Y. Tanida, and K. Ishizuka. 1994. Porphyrin intermediate involved in herbicidal action of $\delta$-aminolevulinic acid on duckweed (Lemna paucicostata Hegelm.). Pestic. Biochem. Physiol. 48:214-221 https://doi.org/10.1006/pest.1994.1022
  23. Mauzerall, D. and S. Granick. 1956. The occurrence and determination of 5-aminolevulinicacidand porphobilinogen in urine. J. Biol. Chem. 219:435- 446
  24. Motazer-Zouhoor, A. 1988. Photodynamic herbicide modulators. Ph. D. Thesis, pp. 348-394. University of Illinois, Urbana, IL, USA
  25. Nishikawa, S., K. Watanabe, T. Tanaka, N. Miyachi, Y. Hotta, and Y. Murooka. 1999. Rhodobacter sphaeroides mutants which accumulate 5-amino- levulinic acid under aerobic and dark conditions. J. Biosci. Bioeng. 87:798-804 https://doi.org/10.1016/S1389-1723(99)80156-X
  26. Oelze, J. 1983. Control of the formation of bacteriochlorophyll, and B875- and B850- bacteriochlorophyll complexes in Rhodopseudo- monas sphaeroides mutant strain H5. Arch. Microbiol. 136:312-316 https://doi.org/10.1007/BF00425223
  27. Rebeiz, C. A. 1987a. A photodynamic herbicide. Amer. Lawn Appl. 8:41-47
  28. Rebeiz, C. A. 1987b. Evergreen. Science 27:40-45 https://doi.org/10.1126/science.27.679.40
  29. Rebeiz, C. A., A. Montazer-Zouhoor, J. M. Mayasich, B. C. Tripathy, S. M. Wu and C. C. Rebeiz. 1988a.PhotodynamicHerbicides.Recent development and molecular basis of selectivity. Crit. Rev. Plant Sci. 6:385-434 https://doi.org/10.1080/07352688809382256
  30. Rebeiz, C. A., A. Montazer-Zouhoor, H. J. Hopen and S. M. Wu. 1984. Photodynamic herbicides: 1. Concept and phenomenolgy. Enzymol. Microbiol. Technol. 6:390-401 https://doi.org/10.1016/0141-0229(84)90012-7
  31. Rebeiz, C. A., J. A. Juvik, and C. C. Rebeiz. 1988b. Photodynamic insecticides. I. Concept and phenomenology. Pesticide Biochem. Physiol. 30:11-27 https://doi.org/10.1016/0048-3575(88)90055-7
  32. Rebeiz, C. A., S. M. Wu, M. Kuhadje, H. Daniell, and E. J. Perkins. 1983. Chlorophyll a biosynthetic routes and chlorophyll a chemical heterogeneity. Mol. Cell. Biochem. 58:97-125
  33. Roy, C. B. and M. Vivekanandan. 1998. Role of aminolevulinic acid in improving biomass production in Vigna catjung, V. mungo, and V. radiata. Biol. Plant. 41:211-215 https://doi.org/10.1023/A:1001806429035
  34. Sasaki, K., S. Ikeda, Y. Nishizawa, and M. Hayashi. 1987. Production of $\delta$-aminolevulinic acid from photosynthetic bacteria. J. Ferment. Technol. 65:511-515 https://doi.org/10.1016/0385-6380(87)90109-9
  35. Sasaki, K., T. Tanaka, N. Nishio, and S. Nagai. 1993. Effect of culture pH on extracellular productionof5-aminolevulinicacidby Rhodobacter sphaeroides from volatile fatty acids. Biotechnol. Lett. 15:859-864
  36. Sasaki, K., T. Tanaka, Y. Nishizawa, and M. Hayashi. 1990. Production of a herbicide, 5-aminolevulinicacid,byRhodobacter sphaeroides using the effluent of swine waste from an anaerobic digestor. Appl. Microbiol. Biotechnol. 32:727-731 https://doi.org/10.1007/BF00164749
  37. Schuitmaker, J. J., P. Baas, H. L. L. M. van Leengoed, F. W. van der Meulen, W. M. Star, and N. van Zandwijk. 1999. Photodynamic therapy: A promising new modality for treatment of cancer. J. Photochem. Photobiol. 34:3-12
  38. Smith, B. B. and C. A. Rebeiz. 1979. Chloroplast biogenesis XXIV. Intrachloroplastic localization of thebiosynthesisandaccumulationofprotopor- phyrin IX, magnesium protoporphyrin monoester and longer wavelength metalloporphyrins during greening. Plant Physiol. 63:227-231 https://doi.org/10.1104/pp.63.2.227
  39. Spikes, J. D. and R. C. Straight. 1987. Biochemi- stry of photodynamic action. in Heitz J. R. and K. R. Downum ed. Light Activated Pesticides. Amer. Chem. Soc. Symp. Ser. 339:98-108, Washington, DC, USA
  40. Tanaka, T., K. Takahashi, Y. Hotta, Y. Takeuchi and M. Konnai. 1992. Promotive effects of 5-aminolevulinic acid on yield of several crops. In 19th Mtg. of Plant Growth Regul. Society of America. pp. 3-9. San Francisc, CA, USA
  41. Tripathy, B. C. and C. A. Rebeiz. 1986. Chloroplast biogenesis. Demonstration of the monovinyl and divinyl monocarboxylic routes of chlorophyll biosynthesis in higher plants. J. Biol. Chem. 261:13556-13564
  42. Watanabe, K., T. Tanaka, Y. Hotta, H. Kuramochi, and Y. Takeuchi. 2000. Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. Plant Growth Regul. 32:99-103