DOI QR코드

DOI QR Code

Effects of Copper-bearing Montmorillonite on Growth Performance and Digestive Function of Growing Pigs

  • Hu, C.H. (Animal Science College, Zhejiang University) ;
  • Xia, M.S. (Animal Science College, Zhejiang University) ;
  • Xu, Z.R. (Animal Science College, Zhejiang University) ;
  • Xiong, L. (Animal Science College, Zhejiang University)
  • Received : 2003.11.07
  • Accepted : 2004.07.16
  • Published : 2004.11.01

Abstract

A total of 96 growing barrows (Duroc${\times}$Landrace${\times}$Yorkshire) at an average BW of 20.2 kg were used to investigate the effects of montmorillonite (MMT) or copper-bearing montmorillonite (Cu-MMT) on growth performance, intestinal microflora, digestive enzyme activities of pancreas and small intestinal contents, and the apparent nutrient digestion. The pigs were allocated to three groups with 32 pigs per treatment for 42 days and the average BW at the end of the experiment was 49.7 kg. The three dietary treatments were basal diet only (control group), basal diet +1.5 g/kg MMT, and basal diet +1.5 g/kg Cu-MMT. The results showed that supplementation with Cu-MMT significantly improved growth performance as compared to control and pigs fed with Cu-MMT had higher average daily gain than those fed with MMT. As compared to control, supplementation with Cu-MMT significantly reduced the total viable counts of Escherichia coli and Clostridium in the small intestine and proximal colon. Supplementation with MMT had no significant influence on intestinal microflora, although there was a tendency for Escherichia coli and Clostridium to be lower than the control. Pigs fed with Cu-MMT had lower viable counts of Escherichia coli in colonic contents than those fed with MMT. Although supplementation with MMT improved the activities of the digestive enzymes in the small intestinal contents, the tendency was not significant. Supplementation with Cu-MMT significantly improved the activities of total protease, amylase and lipase in the small intestinal contents. Supplementation with MMT or Cu-MMT improved the apparent nutrient digestion.

Keywords

References

  1. Ahmed, A. M., M. Ekram, H. Madina, M. A. Amer and T. Abbass.1993. Smectite in acute diarrhea in children: a double-blindplacebo-controlled clinical trial. J. Pediatr. Gastrenterol. Nutr.17:176-181.
  2. Alzueta, C., L. T. Ortiz, A. Rebole, M. L. Rodriguez, C. Centeno and J. Trevino. 2002. Effects of removal of mucilage and enzyme or sepiolite supplement on the nutrient digestibility and metabolyzable energy of a diet containing linseed in broiler chickens. Anim. Feed Sci. Technol. 97:169-181.
  3. Angulo, E., J. Brufau and E. Esteve-Garcia. 1995. Effect of sepiolite on pellet durability in feeds differing in fat and fibre content. Am. Feed Sci. Technol. 53:233-241.
  4. AOAC. 1990. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Arlington, VA.
  5. Borchardt, G. 1989. Smectites. In: (J. B. Dixon, S. B. Weed), Minerals in Soil Environments. Soil Science of America, Madison, WI, pp. 675-727.
  6. Breen, P. J., C. M. Compadre, E. K. Fifer, H. Salari, D. C. Serbus and D. L. Lattin. 1995. Quaternary ammonium compounds inhibit and reduce the attachment of viable Salmonella typhimurium to poultry tissues. J. Food Sci. 60:1191-1196.
  7. Bryant, M. P. and I. M. Allison. 1961. An improved non-selective culture medium for animal bacterial and its use in determining diurnal variation in numbers of bacteria in the rumen. J. Dairy Sci. 44:1446-1453.
  8. Bryant, M. P. 1972. Commentary on the Hungate technique for culture for anaerobic bacteria. Am. J. Clin. Nutr. 25:1324-1330.
  9. Cabezas, M. J., D. Salvador and J. V. Sinisterra. 1991. Stabilisation-activation of pancreatic enzymes adsorbed on to a sepiolite clay. J. Chem. Tech. Biotechnol. 52:265-274.
  10. Conway, P. L. 1994. The function of the gastrointestinal microflora and its regulation. pp. 233-242 (in Chinese) in Proceedings of the 6th international seminar on digestive physiology of pig. Sicuan Science and Technology Press, Sicuan.
  11. Fenton, T. W. and M. Fenton. 1979. An improved procedure for determination of chromic oxide in feed and feces. Can. J. Am. Sci. 59:631-634.
  12. Gao, L. S. 1998. Digestive Physiology and Health Protection. Curatorial Science and Technology Press, Beijing. pp. 173-230 (in Chinese).
  13. Girardeau, J. P. 1987. Smectite aggregation by Escherichia coli. Acta Gastro-Enterologica Belgica. 50:181-192.
  14. Herrera, P., R. C. Burghardt and T. D. Phillp. 2000. Adsorption of salmonella enteritidis by cetylpyridinium-exchanged montmorillonite clays. Vet. Microbiol. 74:259-272.
  15. Holdeman, L. V., E. P. Cato and W. E. C.Moore. 1977. Anaerobic laboratory mannual, 4th edn. Blacksburg: Virginia Polytechnic Institute and State University, pp. 51-70.
  16. Hu, F. and Z. L. Zheng. 2000. Application and prospects of metal ions antibacterial agents. Multipurpose Utiliz. Miner. Resour. (4):28-33 (in Chinese).
  17. Hu, X. R., G. L. Lu, L. S. Chen, J. M. Gu and Y. Zhang. 2002. Study on the mechanism of the interaction between montmorillonite and bacterium. Acta Pharmaceutica Sinica, 37:718-720 (in Chinese).
  18. Kavanagh, S., P. B. Lynch, F. O'Mara and P. J. Caffrey. 2001. A comparison of total collection and marker technique for the measurement of apparent digestibility of diets for growing pigs. Anim. Feed Sci. Technol. 89:49-58. https://doi.org/10.1016/S0377-8401(00)00237-6
  19. Lowry, O. H., N. J. Rosenbrough, A. L. Farr and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.
  20. Lynn, K. R. and N. A. Clevette-Radford. 1984. Purification and characterization of hevin, a serin protease from Hevea brazilliensis. Biochem. J. 23:963-964.
  21. Martin-Kleiner, I., Z. Flegar-Mestric, R. Zadro, D. Breljak and S. Stanovie. 2001. The effect of the zeolite clinoptilolite on serum chemistry and hematopoiesis in mice. Food and Chemical Toxicology 39:717-727.
  22. Mevissen-Verhage, E. A. E., J. H. Marcelis, N. M. de Vos and J. Verhoef. 1987. Bifidobacterium, Bacteroides and Clostridium spp. in faecal samples from breast-fed and bottle-fed infants with and without iron supplement. J. Clin. Microbiol. 25:285-289.
  23. Munoa, F. J. and R. Pares. 1988. Selective medium for the isolation and enumeration of bifidobacterium spp. Appl. Environ. Microbiol. 54:1715-1718.
  24. National Research Council. 1998. Nutrient requirements of swine. I0th Ed. National Academy Press. Washington, DC.
  25. Onodera, Y., S. Sunayama, A. Chatterjee, T. Iwasaki, T. Satoh, T. Suzuki and H. Mimura. 2001. Bactericidal allophonic materials prepared from allophane soil II. Bactericidal activities of silver/phosphorus-silver-loaded allophonic specimens. Appl. Clay Sci. 18:135-144.
  26. Ouhida, I., J. F. Perez, J. Piedrafita and J. Gasa. 2000. The effects of sepiolite in broiler chicken diets of high, medium and low viscosity. Productive performance and nutritive value. Anim. Feed Sci. Technol. 85:183-194.
  27. Paolo, P., G. Martelliam L. Sardia and F. Escribanob. 1999. Protein and energy retention in pigs fed diets containing sepiolite. Anim. Feed Sci. Technol. 79:155-162.
  28. Poulsen, H. D. and N. Oksbjerg. 1995. Effects of dietary inclusion of a zeolite (clinoptilolite) on performance and protein metabolism of young growing pigs. Anim. Feed Sci. Technol. 53:297-303.
  29. Rivera-Garza, M., M. T. Olguin, D. Alcantara and G. Rodriguez- Fuentes. 2000. Silver supported on natural Mexican zeolite as an antibacterial material. Micropor. Mesopor. Mater. 39:431-444.
  30. SAS. Institute Inc., 1989. SAS/STAT User’sGuide, Version 6. SAS Institute Inc., Cary, North Carolina.
  31. Schell, T. C., M. D. Lindemann, E. T. Kornegay, D. J. Blodgett and J. A. Doerr. 1993. Effectiveness of different types of clay for reducing the detrimental effects of aflatoxin-contaminated diets on performance and serum profiles of weanling pigs. J. Anim. Sci. 71:1226-1231.
  32. Somogyi, M. 1960. Modification of two methods for the assay of amylase. Clin. Chem. 6:23-27.
  33. Stadler, M. and P. W. Schindler. 1993. Modeling of $H^{+}$and Cu^{2+}$adsorption on calcium-montmorillonite. Clays and Clay Miner. 41:288-296.
  34. Tauqir, N. A. and H. Nawaz. 2001. Performance and economics of broiler chicks fed on rations supplemented with different levels of sodium bentonite. Int. J. Agric. Biol. 3:149-150.
  35. Theng, B. K. G., S. Hayashi, M. Soma and H. Esyama. 1997. Nuclear magnetic resonance and X-ray photoelectron spectroscopic investigation of Lithium migration in montmorillonite. Clays Clay Miner. 45:718-723.
  36. Tietz, N. W. and E. A. Fiereck. 1966. A specific method for serum lipase determination. Clin. Chem. Acta. 13:352-355.
  37. Tortuero, F. F., E. M. Gonzalez and L. Martin. 1992. Effects of dietary sepiolite on the growth, visceral measurements and food passage in chickens. Arch. Zootec. 41:209-217.
  38. Venglovsky, J., Z. Pacajova, N. Sasakova and M. Vucemilo. 1999. Adsorption properties of natural zeolite and bentonite in pig slurry from the microbiological point of view. Veterinarni Medicina. 44:339-344.
  39. Wang, J. X. and H. S. Fang. 1995. Intestinal microecological observation of smectite in the treatment of diarrhea in children. Chin. J. Clin. Pharmacol. 11:134-137 (in Chinese).
  40. Wang, N., B. W. Li, H. W. Li and J. M. Feng. 2000. Application of nonmetallic minerals in antibacterial materials. Geological J. Chinese Univers. 6:306-309 (in Chinese).
  41. Wu, T. D., L. P. Lin and Q. Li. 2000. A study on exploitation and application grade of natural zeolite for feeds. Food and feed industry. 23:23-25 (in Chinese).
  42. Wu, X. X., D. C. Gong and S. Z. Jin. 1999. Research of the curative effects of smectite rich in magnesium on diarrhea in piglet. J. Hubei Agric. College. 19:137-139 (in Chinese).
  43. Xu, Z. R., C. H. Hu, M. S. Xia, X. A. Zhan and M. Q. Wang. 2003. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult. Sci. 82:648-654.
  44. Xu, Z. R., X. T. Zou, C. H. Hu, M. S. Xia and X. A. Zhan. 2002. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of growing pigs. Asian-Aust. J. Anim. Sci. 15:1784-1789.
  45. Ye, Y., Y. H. Zhou, M. S. Xia and C. H. Hu. 2003. A new type of inorganic antibacterial material: Cu-bearing montmorillonite and discussion on its mechanism. J. inorganic mater. 18:569-574 (in Chinese).

Cited by

  1. Effects of Dietary Supplementation with the Combination of Zeolite and Attapulgite on Growth Performance, Nutrient Digestibility, Secretion of Digestive Enzymes and Intestinal Health in Broiler Chickens vol.27, pp.9, 2014, https://doi.org/10.5713/ajas.2014.14241
  2. Mitigation of Colitis with NovaSil Clay Therapy vol.60, pp.2, 2015, https://doi.org/10.1007/s10620-014-3360-7
  3. The effect of dietary supplementation of transcarpathian zeolite on intestinal morphology in female broiler chickens vol.26, pp.3, 2017, https://doi.org/10.3382/japr/pfx011
  4. Suhuai suckling piglet hindgut microbiome-metabolome responses to different dietary copper levels vol.103, pp.2, 2019, https://doi.org/10.1007/s00253-018-9533-0
  5. Effect of Copper on Plasma Ceruloplasmin and Antioxidant Ability in Broiler Chickens Challenged by Lipopolysaccharide vol.22, pp.10, 2004, https://doi.org/10.5713/ajas.2009.90259