DOI QR코드

DOI QR Code

Identification of the DNA Binding Element of the Human ZNF333 Protein

  • Jing, Zhe (Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Liu, Yaping (Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Dong, Min (Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Hu, Shaoyi (Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College) ;
  • Huang, Shangzhi (Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College)
  • Published : 2004.11.30

Abstract

ZNF 333 is a new and sole gene containing two KRAB domains which has been identified currently. It is a member of subfamilies of zinc finger gene complex which had been localized on chromosome 19p13.1. The ZNF333 gene mainly encodes a 75.5 kDa protein which contains 10 zinc finger domains. Using the methods of random oligonucleotide selection assay, electromobility gel shift assay and luciferase activity assay, we found that ZNF333 recognized the specific DNA core binding sequence ATAAT. Moreover, these data indicated that the KRAB domain of ZNF333 really has the ability of transcriptional repression.

Keywords

References

  1. Ayyanathan, K., Lechner, M. S., Bell, P., Maul, G. G., Schultz, D. C., Yamada, Y., Tanaka, K., Torigoe, K. and Rauscher, F. J. 3rd. (2003) Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev. 17, 1855-1869. https://doi.org/10.1101/gad.1102803
  2. Bellefroid, E. J., Poncelet, D. A., Lecocq, P. J., Revelant, O. and Martial, J. A. (1991) The evolutionarily conserved Kruppelassociated box domain defines a subfamily of eukaryotic multifingered proteins. Proc. Natl. Acad. Sci. USA 88, 3608- 3612. https://doi.org/10.1073/pnas.88.9.3608
  3. Chen, J., Yong, T., Tao, Y., Mingyue, L., Jiuyong, X. and Shangzhi, H. (2002) Localization of a novel KRAB zinc finger transcription factor. HGM2002 Poster Abstracts 3, 104.
  4. Chrisman, H. R. and Tindall, D. J. (2003) Identification and characterization of a consensus DNA binding element for the zinc finger transcription factor TIEG/EGR alpha. DNA Cell Biol. 22, 187-199. https://doi.org/10.1089/104454903321655819
  5. Conroy, A. T., Sharma, M., Holtz, A. E., Wu, C., Sun, Z. and Weigel, R. J. (2002) A novel zinc finger transcription factor with two isoforms that are differentially repressed by estrogen receptor-alpha. J. Biol. Chem. 277, 9326-9334. https://doi.org/10.1074/jbc.M107702200
  6. Cook, T., Gebelein, B., Belal, M., Mesa, K. and Urrutia, R. (1999) Three conserved transcriptional repressor domains are a defining feature of the TIEG subfamily of Sp1-like zinc finger proteins. J. Biol. Chem. 274, 29500-29504. https://doi.org/10.1074/jbc.274.41.29500
  7. Dehal, P., Predki, P., Olsen, A. S., Kobayashi, A., Folta, P., Lucas, S., Land, M., Terry, A., Ecale Zhou, C. L., Rash, S., Zhang, Q., Gordon, L., Kim, J., Elkin, C., Pollard, M. J., Richardson, P., Rokhsar, D., Uberbacher, E., Hawkins, T., Branscomb, E. and Stubbs, L. (2001) Human chromosome 19 and related regions in mouse: conservative and lineage-specific evolution. Science 293, 104-111. https://doi.org/10.1126/science.1060310
  8. Gebelein, B. and Urrutia, R. (2001) Sequence-specific transcriptional repression by KS1 a multiple-zinc-finger- Kruppel-associated box protein. Mol. Cell Biol. 21, 928-939. https://doi.org/10.1128/MCB.21.3.928-939.2001
  9. Jheon, A. H., Ganss, B., Cheifetz, S. and Sodek, J. (2001) Characterization of a novel KRAB/C2H2 zinc finger transcription factor involved in bone development. J. Biol. Chem. 276, 18282-18289. https://doi.org/10.1074/jbc.M010885200
  10. Jheon, A. H., Suzuki, N., Nishiyama, T., Cheifetz, S., Sodek, J. and Ganss, B. (2003) Characterization of the 5'-flanking region of the rat AJ18 gene. Gene. 310, 203-213. https://doi.org/10.1016/S0378-1119(03)00553-5
  11. Looman, C., Abrink, M., Mark, C. and Hellman, L. (2002) KRAB zinc finger proteins: an analysis of the molecular mechanisms governing their increase in numbers and complexity during evolution. Mol. Biol. Evol. 19, 2118-2130. https://doi.org/10.1093/oxfordjournals.molbev.a004037
  12. McCarty, A. S., Kleiger, G., Eisenberg, D. and Smale, S. T. (2003) Selective dimerization of a C2H2 zinc finger subfamily. Mol. Cell 11, 459-470. https://doi.org/10.1016/S1097-2765(03)00043-1
  13. McPherson, L. A. and Weigel, R. J. (1999) AP2alpha and AP2gamma: a comparison of binding site specificity and transactivation of the estrogen receptor promoter and single site promoter constructs. Nucleic. Acids Res. 27, 4040-4049 https://doi.org/10.1093/nar/27.20.4040
  14. Miller, J., McLachlan, A. D. and Klug, A. (1985) Repetitive zincbinding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4, 1609-1614.
  15. Nielsen, A. L., Ortiz, J. A., You, J., Oulad-Abdelghani, M., Khechumian, R. and Gansmuller, A. (1999) Chambon, P, Losson, R. Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family. EMBO J. 18, 6385-6395. https://doi.org/10.1093/emboj/18.22.6385
  16. Peng, H., Zheng, L., Lee, W. H., Rux, J. J. and Rauscher, F. J. 3rd. (2002) A common DNA-binding site for SZF1 and the BRCA1-associated zinc finger protein, ZBRK1. Cancer Res. 62, 3773-3781.
  17. Philipsen, S. and Suske, G. (1999) A tale of three fingers: the family of mammalian Sp/XKLF transcription factors. Nucleic Acids Res. 27, 2991-3000. https://doi.org/10.1093/nar/27.15.2991
  18. Rosati, M., Rocchi, M., Storlazzi, C. T. and Grimaldi, G. (2001) Assignment to chromosome 12q24.33, gene organization and splicing of the human KRAB/FPB containing zinc finger gene ZNF84. Cytogenet. Cell Genet. 94, 127-130. https://doi.org/10.1159/000048803
  19. Sakai, T., Hino, K., Wada, S. and Maeda, H. (2003) Identification of the DNA binding specificity of the human ZNF219 protein and its function as a transcriptional repressor. DNA Res. 10, 155-165. https://doi.org/10.1093/dnares/10.4.155
  20. Schultz, D. C., Ayyanathan, K., Negorev, D., Maul, G. G. and Rauscher, F. J. 3rd. (2002) SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes. Dev. 16, 919-932. https://doi.org/10.1101/gad.973302
  21. Shannon, M., Kim, J., Ashworth, L., Branscomb, E. and Stubbs, L. (1998) Tandem zinc-finger gene families in mammals: insights and unanswered questions. DNA Seq. 8, 303-315.
  22. Sukegawa, J. and Blobel, G. (1993) A nuclear pore complex protein that contains zinc finger motifs, binds DNA, and faces the nucleoplasm. Cell 72, 29-38. https://doi.org/10.1016/0092-8674(93)90047-T
  23. Tanaka, K., Tsumaki, N., Kozak, C. A., Matsumoto, Y., Nakatani, F., Iwamoto, Y. and Yamada, Y. A. (2002) Kruppel-associated box-zinc finger protein, NT2, represses cell-type-specific promoter activity of the alpha 2(XI) collagen gene. Mol. Cell Biol. 22, 4256-4267. https://doi.org/10.1128/MCB.22.12.4256-4267.2002
  24. Tang, W. and Perry, S. E. (2003) Binding site selection for the plant MADS domain protein AGL15: an in vitro and in vivo study. J. Biol. Chem. 278, 28154-28159. https://doi.org/10.1074/jbc.M212976200
  25. Tekki-Kessaris, N., Bonventre, J. V. and Boulter, C. A. (1999) Characterization of the mouse Kid1 gene and identification of a highly related gene, Kid2. Gene 240, 13-22. https://doi.org/10.1016/S0378-1119(99)00440-0
  26. Thiesen, H. J. and Bach, C. (1990) Target Detection Assay (TDA): a versatile procedure to determine DNA binding sites as demonstrated on SP1 protein. Nucleic Acids Res. 18, 3203- 3209. https://doi.org/10.1093/nar/18.11.3203
  27. Tian, Y., Breedveld, G. J., Huang, S., Oostra, B. A., Heutink, P. and Lo, W. H. (2002) Characterization of ZNF333, a novel double KRAB domain containing zinc finger gene on human chromosome 19p13.1. Biochim. Biophys. Acta 1577, 121-125. https://doi.org/10.1016/S0167-4781(02)00397-4
  28. Turner, J. and Crossley, M. (1999) Mammalian Kruppel-like transcription factors: more than just a pretty finger. Trends Biochem. Sci. 24, 236-240. https://doi.org/10.1016/S0968-0004(99)01406-1
  29. Wang, L., Wei, D., Huang, S., Peng, Z., Le, X., Wu, T. T., Yao, J., Ajani, J. and Xie, K. (2003) Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin. Cancer Res. 17, 6371-6380.
  30. Zhang, T. F., Yu, S. Q., Guan, L. S. and Wang, Z. Y. (2003) Inhibition of breast cancer cell growth by the Wilms' tumor suppressor WT1 is associated with a destabilization of betacatenin. Anticancer Res. 23, 3575-3584.

Cited by

  1. DNA Light-strand Preferential Recognition of Human Mitochondria Transcription Termination Factor mTERF vol.38, pp.6, 2005, https://doi.org/10.5483/BMBRep.2005.38.6.690
  2. Apak competes with p53 for direct binding to intron 1 of p53AIP1 to regulate apoptosis vol.13, pp.4, 2012, https://doi.org/10.1038/embor.2012.10
  3. ZNF424, a novel human KRAB/C2H2 zinc finger protein, suppresses NFAT and p21 pathway vol.43, pp.3, 2010, https://doi.org/10.5483/BMBRep.2010.43.3.212
  4. Brain proteins interacting with the tetramerization region of non-erythroid alpha spectrin vol.12, pp.4, 2007, https://doi.org/10.2478/s11658-007-0028-8