in vitro Biological Response of Malignant Glioma Cell Lines to Gamma Knife Irradiation

Kim, Jeong-Eun;Paek, Sun-Ha;Chung, Hyun-Tai;Kim, Dong-Gyu;Jung, Hee-Won

  • Published : 20040600

Abstract

Objective : The effectiveness of gamma knife radiosurgery to malignant glioma has been controversial. The goal of this study is to elucidate the in vitro biological response of malignant glioma cells to gamma knife radiosurgery. Methods : The human glioma cell lines U87 MG (p53-wild type) and U373 MG (p53-mutant type) were irradiated in vitro via Gamma Knife 23004B2 using specially designed well holder, with a maximal dose of 10, 20, 40, 80Gy. Those two cell lines were used to study a variety of gamma knife effects on morphological change by microscopic observation, on cell viability by MTT assay, on postirradiated apoptosis by annexin assay, and on cell cycle by flow cytometry. Results : With increasing dosage, more spheroid cells were observed in tumor cells and this phenomenon peaked at the second day after gamma knife irradiation. MTT assay performed 3 hours after irradiation revealed reduced cell survival in the cells irradiated with over 20Gy (p=0.000). The annexin assay showed that apoptosis tended to increase on escalating the radiation dose in U87 cells. G2-M phase cell cycle arrest markedly increased 48 hours after irradiation, and this was more exaggerated in U373 MG than in U87 MG. Conclusion : These results suggest that the biological effect of gamma knife on malignant glioma cell line in vitro is mainly mediated by G2-M phase cell cycle arrest.

Keywords

References

  1. Badie B, Goh CS, Klaver J, Herweijer H, Boothman DA : Combined radiation and p53 gene therapy of malignant glioma cells. Cancer Gene Ther 6 : 155-162, 1999 https://doi.org/10.1038/sj.cgt.7700009
  2. Black PM : Brain tumor. Part 2. N Engl J Med 324 : 1555-1564, 1991 https://doi.org/10.1056/NEJM199105303242205
  3. Cardinale RM, Schmidt-Ullrich RK, Benedict SH, Zwicker RD, Han DC, Broaddus WC : Accelerated radiotherapy regimen for malignant gliomas using stereotactic concomitant boosts for dose escalation. Radiat Oncol Investig 6 : 175-181, 1998 https://doi.org/10.1002/(SICI)1520-6823(1998)6:4<175::AID-ROI5>3.0.CO;2-V
  4. Chamberlain MC, Barba D, Kormanik P, Shea WM : Stereotactic radiosurgery for recurrent gliomas. Cancer 74 : 1342-1347, 1994 https://doi.org/10.1002/1097-0142(19940815)74:4<1342::AID-CNCR2820740426>3.0.CO;2-Y
  5. Gomez-Manzano C, Fueyo J, Kyritsis AP, Steck PA, Roth JA, McDonnell TJ, et al : Adenovirus-mediated transfer of the p53 gene produces rapid and generalized death of human glioma cells via apoptosis. Cancer Res 56 : 694-699, 1996
  6. Grabb PA, Lunsford LD, Albright AL, Kondziolka D, Flickinger JC : Stereotactic radiosurgery for glial neoplasms of childhood. Neurosurgery 38 : 696-701, 1996 https://doi.org/10.1227/00006123-199604000-00013
  7. Hall EJ, Cox JD : Physical and biologic basis of radiation therapy, in Cox JD (ed) : Moss' Radiation Oncology. St Louis : Mosby-Year Book Inc., 1994, pp3-66
  8. Hirato M, Hirato J, Zama A, Inoue H, Ohye C, Shibazaki T, et al : Radiobiological effects of gamma knife radiosurgery on brain tumors studied in autopsy and surgical specimen. Stereotact Funct Neurosurg 66 : 4-16, 1996 https://doi.org/10.1159/000099695
  9. Khoo VS, Oldham M, Adams EJ, Bedford JL, Webb S, Brada M : Comparison of intensity-modulated tomotherapy with stereotactically guided conformal radiotherapy for brain tumors. Int J Radiat Oncol Biol Phys 45 : 415-425, 1999
  10. Kleihues P, Burger PC, Collins VP, Newcomb EW, Ohgaki H, Cavenee WK : Glioblastoma, in Kleihues P, Cavenee WK (eds) : WHO Classification of Brain Tumours. Pathology and Genetics. Tumours of the Nervous System. Lyon : IARC Press, 2000, pp29-39
  11. Kondziolka D, Flickinger JC, Bissonette DJ, Bozik M, Lunsford LD : Survival benefit of stereotactic radiosurgery for patients with malignant glial neoplasms. Neurosurgery 41 : 776-785, 1997 https://doi.org/10.1097/00006123-199710000-00004
  12. Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB : Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 89 : 7491-7495, 1992 https://doi.org/10.1073/pnas.89.16.7491
  13. Leksell L : The stereotaxic method for radiosurgery of the brain. Acta Chir Scand 102 : 316-319, 1951
  14. Loeffler JS, Alexander E 3rd, Shea WM, Wen PY, Fine HA, Kooy HM, et al : Radiosurgery as part of the initial management of patients with malignant gliomas. J Clin Oncol 10 : 1379-1385, 1992
  15. Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM, et al : Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus : inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182 : 1545-1556, 1995 https://doi.org/10.1084/jem.182.5.1545
  16. Masciopinto JE, Levin AB, Mehta MP, Rhode BS : Stereotactic radiosurgery for glioblastoma : a final report of 31 patients. J Neurosurg 82 : 530-535, 1995 https://doi.org/10.3171/jns.1995.82.4.0530
  17. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, et al : Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9 : 1799-1809, 1994
  18. O'Connor MM, Mayberg MR : Effects of radiation on cerebral vasculature : a review. Neurosurgery 46 : 138-151, 2000
  19. Ostertag CB : Stereotactic radiation therapy and radiosurgery. Stereotact Funct Neurosurg 63 : 220-232, 1994 https://doi.org/10.1159/000100318
  20. Polednak AP, Flannery JT : Brain, other central nervous system, and eye cancer. Cancer 75(Suppl 1) : 330-337, 1995
  21. Salcman M : Surgical resection of malignant brain tumors : who benefits? Oncology (Huntingt) 2 : 47-56, 59-60, 63, 1988
  22. Shrieve DC, Alexander E 3rd, Black PMcL, Wen PY, Fine HA, Kooy HM, et al : Treatment of patients with primary glioblastoma multiforme with standard postoperative radiotherapy and radiosurgical boost : prognostic factors and long-term outcome. J Neurosurg 86 : 525-531, 1999
  23. Shu HK, Kim MM, Chen P, Furman F, Julin CM, Israel MA : The intrinsic radioresistance of glioblastoma-derived cell lines is associated with a failure of p53 to induce p21(BAX) expression. Proc Natl Acad Sci USA 95 : 14453-14458, 1998 https://doi.org/10.1073/pnas.95.24.14453
  24. Slichenmyer WJ, Nelson WG, Slebos RJ, Kastan MB : Loss of a p53-associated G1 checkpoint does not decrease cell survival following DNA damage. Cancer Res 53 : 4164-4168, 1993
  25. Somaza SC, Kondziolka D, Lunsford LD, Flickinger JC, Bissonette DJ, Albright AL : Early outcomes after stereotactic radiosurgery for growing pilocytic astrocytomas in children. Pediatr Neurosurg 25 : 109-115, 1996 https://doi.org/10.1159/000121107
  26. Steiner L, Lindquist C, Steiner M : Radiosurgery, in Symon L, Calliauw L, Cohadon F (eds) : Advances and Technical Standards in Neurosurgery. Berlin : Springer, 1992, pp119-202
  27. Tao MN, Li YU, Lu GL, Xu Y, Wong S : Upregulation of vascular endothelial growth factor is associated with radiation-induced blood-spinal cord barrier breakdown. J Neuropathol Exp Neurol 58 : 1051-1060, 1999 https://doi.org/10.1097/00005072-199910000-00003
  28. Taylor SJ, Langston WJ, Reddick EW : Clinical value of proton magnetic resonance spectroscopy for differentiating recurrent or residual brain tumor from delayed cerebral necrosis. Int J Radiat Oncol Biol Phys 36 : 1251-1261, 1996 https://doi.org/10.1016/S0360-3016(96)00376-8
  29. Uematsu Y, Fujita K, Tanaka Y, Shimizu M, Oobayashi S, Itakura T, et al : Gamma knife radiosurgery for neuroepithelial tumors: radiological and histological changes. Neuropathology 21 : 298-306, 2001 https://doi.org/10.1046/j.1440-1789.2001.00405.x
  30. Verhey LJ, Smith V, Serago CF : Comparison of radiosurgery treatment modalities based on physical dose distributions. Int J Radiat Oncol Biol Phys 40 : 497-505, 1988
  31. Wara WM, Bauman GS, Sneed PK : Brain, brain stem and cerebellum, in Perez CA, Brady LW (eds) : Principles and Practice of Radiation Oncology. Philadelphia : Lippincott-Raven, 1998, pp777-828