Nitric Oxide Synthase and Calcium-binding Protein-containing Neurons in the Hamster Visual Cortex

Lee, Ji Eun;Jeon, Chang Jin
이지은;전창진

  • Published : 20040000

Abstract

Keywords

References

  1. Brain Res. v.620 Nitric oxide synthase in the visual cortex of monocular monkeys as revealed by light and electron microscopic immunocytochemistry. Aoki,C.;Fenstemaker,S.;Lubin,M.;Go,C.G. https://doi.org/10.1016/0006-8993(93)90275-R
  2. Brain Res. v.613 Appearance of calretinin-immunoreactive neurons in the upper layers of the rat superior colliculus after eye enucleation. Arai,M.;Arai,R.;Sasamoto,K.;Kani,K.;Maeda,T.;Deura,S.;Jacobowitz,D.M. https://doi.org/10.1016/0006-8993(93)90924-C
  3. Trends Neurosci. v.15 Calcium-binding proteins in the nervous system. Baimbridge,K.G.;Celio,M.;Rogers,J.H. https://doi.org/10.1016/0166-2236(92)90081-I
  4. Biochem. Biophys. Acta. v.1448 Calcium-binding protein S100A4 in health and disease. Barraclough,R. https://doi.org/10.1016/S0167-4889(98)00143-8
  5. Exp. Brain Res. v.89 Calcium binding protein (calbindin D28k) immunoreactivity in the hamster superior colliculus: ultrastructure and lack of co-localization with GABA. Behan,M.;Jourdain,A.;Bray,G.M.
  6. J. Comp. Neurol. v.452 Chemoarchitecture of GABAergic neurons in the ferret superior colliculus. Behan,M.;Steinhacker,K.;Jeffrey-Borger,S.;Meredith,M.A. https://doi.org/10.1002/cne.10378
  7. J. Comp. Neurol. v.301 Distribution of parvalbumin immunoreactivity in the visual cortex of old world monkeys and humans. Blumcke,I.;Hof,P.R.;Morrison,J.H. https://doi.org/10.1002/cne.903010307
  8. Proc. Natl. Acad. Sci. v.87 Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Bredit,D.S.;Synder,S.M. https://doi.org/10.1073/pnas.87.2.682
  9. Neuroscience v.51 Parvalbumin immunoreactivity: a reliable marker for the effects of monocular deprivation in the rat visual cortex. Cellerino,A.;Siciliano,R.;Domenici,L.;Mafferi,L. https://doi.org/10.1016/0306-4522(92)90514-3
  10. NeuroReport v.9 Immunocytochemical study on the distribution of NOS-immunoreactive neurons in the cerebral cortex of aged rats. Cha,C.I.;Uhm,M.R.;Shin,D.H.;Chung,Y.H.;Baik,S.H. https://doi.org/10.1097/00001756-199807130-00004
  11. J. Physiol. v.472 Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurons. Chard,P.S.;Bleakman,D.;Christakosm,S.;Fullmer,C.S.;Miller,R.J.
  12. Brain Res. Rev. v.34 Chemical anatomy of striatal interneurons in normal individuals and inpatients with Huntington's disease. Cicchetti,F.;Prensa,L.;Wu,Y.;Parent,A. https://doi.org/10.1016/S0165-0173(00)00039-4
  13. Biochem. Soc. Trans. v.31 Calmodulin-dependent regulation of mammalian nitric oxide synthase. Daff,S. https://doi.org/10.1042/BST0310502
  14. Neurochem. Int. v.29 Nitric oxide actions in neurochemistry. Dawson,V.L.;Dawson,T.M. https://doi.org/10.1016/0197-0186(95)00149-2
  15. J. Comp. Neurol. v.412 Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey. DeFelipe,J.;Gonzalez-Albo,M.;Del Rio,M.;Elston,G. https://doi.org/10.1002/(SICI)1096-9861(19990927)412:3<515::AID-CNE10>3.0.CO;2-1
  16. Exp. Brain Res. v.84 Calcium binding proteins and neuropeptides as molecular markers of GABAergic interneurons in the cat visual cortex. Demeulemeester,H.;Arckens,L.;Vandesande,F.;Orban,G.A.;Heizmann,G.A.;Pochet,R.
  17. Brain Res. v.909 Calretinin and Calbindin D28k delay the onset of cell death after excitotoxic stimulation in transfected P19 cells. D'Orlando,C.;Fellay,B.;Schwaller,B.;Salicio,V.;Bloc,A.;Gotzos,V.;Celio,M. https://doi.org/10.1016/S0006-8993(01)02671-3
  18. Cell Tissue Res. v.264 Calretinin and calbindin in the retina of the developing chick. Ellis,J.H.;Richard,D.E.;Rogers,J.H. https://doi.org/10.1007/BF00313956
  19. J. Comp. Neurol. v.422 Development of inhibitory circuits in visual and auditory cortex of postnatal ferrets: immunocytochemical localization of calbindin-and parvalbumin-containing neurons. Gao,W.J.;Wormington,A.B.;Newman,D.E.;Pallas,S.L. https://doi.org/10.1002/(SICI)1096-9861(20000619)422:1<140::AID-CNE9>3.0.CO;2-0
  20. Brain Res. v.595 Calretinin-immunoreactive neurons in the primary visual cortex of dolphin and human. Glezer,I.I.;Hof,P.R.;Morgane,P.J. https://doi.org/10.1016/0006-8993(92)91047-I
  21. J. Chem. Neuroanat. v.15 Comparative analysis of calcium-binding protein-immunoreactive neuronal populations in the auditory and visual systems of the bottlenose dolphin (Tursiops truncatus) and macaque monkey(Macaca fasciularis). Glezer,I.I.;Hof,P.R.;Morgane,P.J. https://doi.org/10.1016/S0891-0618(98)00022-2
  22. Braz. J. Med. Biol. Res. v.29 Calretinin in the mouse superior colliculus originates from retinal ganglion cells. Gobersztejn,F.;Britto,L.R.G.
  23. Cereb. Cortex v.7 Three distinct families of GABAergic neurons in rat visual cortex. Gonchar,Y.;Burkhalter,A. https://doi.org/10.1093/cercor/7.4.347
  24. Vis. Neurosci. v.15 The distribution of calcium-binding proteins in the lateral geniculate nucleus and visual cortex of new world monkey, the marmoset, Callithrix jacchus. Goodchild,A.K.;Martin,P.R.
  25. Neuropathol. Appl. Neurobiol. v.27 Accumulation of calbindin in cortical pyramidal cells with ageing: a putative protective mechanism which fails in Alzheimer's disease. Greene,J.R.;Radenahmad,N.;Wilcock,G.K.;Neal,J.W.;Pearson,R.C. https://doi.org/10.1046/j.0305-1846.2001.00351.x
  26. Calcium Regulation by Calcium-binding Proteins in Neurodegenerative Disorders Heizmann,C.W.;Braun,K.
  27. Adv. Exp. Med. Biol. v.269 Parvalbumin, molecular and functional aspects. Heizmann,C.W.;Rohrenbeck,J.;Kamphuis,W. https://doi.org/10.1007/978-1-4684-5754-4_8
  28. J. Comp. Neurol. v.307 Development of the calcium-binding proteins parvalbumin and calbindin in monkey striate cortex. Hendrickson,A.E.;Van Brederode,J.F.M.;Mulligan,A.;Celio,M.R. https://doi.org/10.1002/cne.903070409
  29. Vis. Neruosci. v.10 Neurochemical compartmentation of monkey and human visual cortex: similarities and variations in calbindin immunoreactivity across species. Hendry,S.H.;Carder,R.K. https://doi.org/10.1017/S095252380001021X
  30. Dev. Brain Res. v.77 The development of parvalbumin and calbindin-D28K immunoreactive interneurons in kitten visual cortical areas. Hogan,D.;Berman,N.E.J. https://doi.org/10.1016/0165-3806(94)90209-7
  31. Neurosci. Res. v.44 Immunocyto\chemical localization of calretinin in the superficial layers of the cat superior colliculus. Hong,S.K.;Kim,J.Y.;Jeon,C.J. https://doi.org/10.1016/S0168-0102(02)00154-2
  32. J. Comp. Neurol. v.417 Does the visual system of the flying fox resemble that of primates? The distribution of calcium-binding proteins in the primary visual pathway of pteropus poliocephalus. Ichida,J.M.;Rosa,M.G.P.;Cassgrande,V.A. https://doi.org/10.1002/(SICI)1096-9861(20000131)417:1<73::AID-CNE6>3.0.CO;2-C
  33. Mol. Cells v.7 Immunocytochemical localization of calcium-binding protein calretinin containing neurons in cat visual cortex. Jeon,C.J.;Park,H.J.
  34. Neuroreport v.9 Calretinin and calbindin D28K immunoreactivity in the superficial layers of the rabbit superior colliculus. Jeon,C.J.;Pyun,J.K.;Yang,H.W. https://doi.org/10.1097/00001756-199812010-00015
  35. J. Comp. Neurol. v.449 Patterns of expression of calcium-binding proteins and neuronal nitric oxide synthase in different population of hippocampal GABAergic neurons in mice. Jinno,S.;Kosaka,T. https://doi.org/10.1002/cne.10251
  36. Neurosci. Lett. v.330 Changes of calretinin, calbindin D28K and parvalbumin-immunoreactive neurons in the superficial layers of the hamster superior colliculus following monocular enucleation. Kang,Y.S.;Park,W.M.;Lim,J.K.;Kim,S.Y.;Jeon,C.J. https://doi.org/10.1016/S0304-3940(02)00723-1
  37. Mol. Cells v.14 Morphology of calretinin-immunoreactive neurons in the superficial layers of the hamster superior colliculus after enucleation: lack of co-localization with GABA. Kang,Y.S.;Kong,J.H.;Park,W.M.;Kwon,O.J.;Lee,J.E.;Kim,S.Y.;Jeon,C.J.
  38. Brain Res. Bulletin. v.52 Role of nitric oxide in the regulation of monoaminergic neurotransmission. Kiss,J.P. https://doi.org/10.1016/S0361-9230(00)00282-3
  39. Cereb. Cortex v.8 Postnatal development of calcium-binding proteins calbindin and parvalbumin in human visual cortex. Letinic,K.;Kostovic,I. https://doi.org/10.1093/cercor/8.7.660
  40. Vis. Neurosci. v.13 Calcium-binding proteins immunoreactivity in the human subcortical and cortical visual structures. Leuba,G.;Saini,K. https://doi.org/10.1017/S0952523800007665
  41. J. Chem. Neuroanat. v.13 Co-Localization of parvalbumin, calretinin, and calbindin D-28k in human cortical and subcortical visual structures. Leuba,G.;Saini,K. https://doi.org/10.1016/S0891-0618(97)00022-7
  42. Exp. Neurol. v.152 Quantitative distribution of paralbumin, calretinin, and calbindin D28k immunoreactive neurons in the visual cortex of normal and Alzheimer cases Leuba,G.;Kraftsik,R.;Sainin,K. https://doi.org/10.1006/exnr.1998.6838
  43. J. Hirnforsch. v.34 The calcium-binding protein calretinin is localized in a subset of interneurons in the rat cerebral cortex: a light and electron immunohistochemical study. Luth,H.J.;Blumcke,I.;Winkelmann,E.;Celio,M.R.
  44. J. Neurocytol. v.23 Morphological analyses of NADPH-diaphorase/nitric oxide synthase positive structures in human visual cortex. Luth,H.J.;Hedlich,A.;Hilbig,H.;Winkelmann,E.;Mayer,B. https://doi.org/10.1007/BF01268089
  45. Trends Neurosci. v.23 Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Mattson,M.P.;LaFerla,M.;Chan,S.L.;Leissring,M.A.;Shepel,P.N.;Geiger,J.D. https://doi.org/10.1016/S0166-2236(00)01548-4
  46. J. Comp. Neurol. v.379 Calretinin-immunoreactive local circuit neurons in area 17 of the cynomolgus monkey, Macaca fascicularis. Meskenaite,V. https://doi.org/10.1002/(SICI)1096-9861(19970303)379:1<113::AID-CNE8>3.0.CO;2-7
  47. Brain Res. Mol. Brain Res. v.5 Neuronal nitric oxide synthase (nNOS)mRNA expression and NADPH-diaphorase staining in the frontal cortex, visual cortex and hippocampus of control and Alzheimer's disease brains Norris,P.J.;Faull,R.L.;Emson,P.C.
  48. Science v.265 Endothelial NOS and the blockade of LTP by NOS inhibitors lacking neuronal NOS. O'Dell,T.J.;Huang,P.L.;Dawson,T.M.;Dinnerman,J.L.;Snyder,S.H.;Kandel,E.R.;Fishman,M.C. https://doi.org/10.1126/science.7518615
  49. Mol. Cells v.9 Localization of calcium-binding protein parvalbumin-immunoreactive neurons in mouse and hamster visual cortex. Park,H.J.;Hong,S.K.;Kong,J.H.;Jeon,C.J.
  50. Mol. Cells v.10 Calcium-binding protein calbindin D28K, calretinin, and parvalbumin immunoreactivity in the rabbit visual cortex. Park,H.J.;Lee,S.N.;Lim,H.R.;Kong,J.H.;Jeon,C.J. https://doi.org/10.1007/s10059-000-0206-2
  51. Mol. Cells v.14 The distribution and morphology of calbindin D28K and calretinin-immunoreactive neurons in the visual cortex of mouse. Park,H.J.;Kong,J.H.;Kang,Y.S.;Park,W.M.;Jeong,S.A.;Park,S.M.;Lim,J.K.;Jeon,C.J.
  52. Trends Neurosic. v.19 Turned on by $Ca^{2+}$! The physiology and pathology of $Ca^{2+}$-binding proteins in the retina. Polans,A.;Baehr,W.;Palczewski,K. https://doi.org/10.1016/S0166-2236(96)10059-X
  53. Brain Res. Bull. v.55 Neurochemical correlates of cortical GABAergic deficits in schizophrenia: selective losses of calcium binding protein immunoreactivity. Reynolds,G.P.;Zhang,Z.J.;Beasley,C.L. https://doi.org/10.1016/S0361-9230(01)00526-3
  54. J. Cell Biol. v.105 Calretinin: a gene for a novel calcium=binding protein expressed principally in neurons. Rogers,J.H. https://doi.org/10.1083/jcb.105.3.1343
  55. Adv. Exp. Med. Biol. v.269 Calretinin and other calcium binding proteins in the nervous system. Rogers,J.;Khan,M.;Ellis,J. https://doi.org/10.1007/978-1-4684-5754-4_32
  56. J. Comp. Neurol. v.251 NADPH-diaphorase histochemistry in the macaque striate cortex. Sandell,J.H. https://doi.org/10.1002/cne.902510309
  57. Trends Biochem. Sci. v.21 The S100 family of EF-hand calcium-binding proteins: functions and pathology. Schafer,B.W.;Heizmann,C.W.
  58. Annu. Rev. Pharmacol. Toxicol. v.36 Oxidative stress in neuron degenerative disease. Simonian,N.A.;Coyle,J.T. https://doi.org/10.1146/annurev.pa.36.040196.000503
  59. J. Comp. Neurol. v.263 Immunohistochemical localization of calcium-binding proteins, parvalbumin and calbindin-D28k, in the adult and developing visual cortex of cats: a light and electron microscopic study. Stichel,C.C.;Singer,W.;Heizmann,C.W.;Norman,A.W.
  60. Calcium-Binding Proteins Localization of intracellular calcium binding proteins Welsh,M.J.;Thompson,M.P.(ed.)
  61. Cereb. Cortex v.10 The distribution of NADPH diaphorase and nitric oxide synthetase (NOS) in relation to the functional compartments of areas V1 and V2 of primate visual cortex Wiencken,A.E.;Casagrande,V.A. https://doi.org/10.1093/cercor/10.5.499
  62. Brain Res. v.863 Striatal interneurons expressing calretinin, parvalbumin or NADPH-diaphorase: a comparative study in the rat, monkey and human. Wu,Y.;Parent,A. https://doi.org/10.1016/S0006-8993(00)02135-1
  63. Brain Behav. Evol. v.48 A morphological study of neurons expressing NADPH diaphorase activity in the visual cortex of the Golden hamster. Xiao,Y.M.;Diao,Y.C.;So,K.F. https://doi.org/10.1159/000113200
  64. J. Comp. Neurol. v.363 Developmental changes in calretinin expression in GABAergic and nonGABAergic neurons in monkey striate cortex. Yan,Y.H.;Van Brederode,J.F.M.;Hendrickson,A.E. https://doi.org/10.1002/cne.903630108
  65. J. Neurocytol. v.24 Transient co-localization of calretinin, parvalbumin, and calbindin-D28K in developing visual cortex of monkey. Yan,Y.H.;Van Brederode,J.F.M.;Hendrickson,A.E. https://doi.org/10.1007/BF01179982
  66. Stroke v.32 Calbindin D28k overexpression protects striatal neurons from transient focal cerebral ischemia. Yenari,M.A.;Minami,M.;Sun,G.H.;Meier,T.J.;Kunis,D.M.;McLaughlin,J.R.;Ho,D.Y.;Sapolsky,R.M.;Steinberg,G.K. https://doi.org/10.1161/01.STR.32.4.1028