Analysis of the Muscle Activity in Taekwondo kicking Techniques

태권도 발차기 분류에 따른 Muscle Activity 분석

Shin, Soung-Hyoo;Park, Ki-Sa;Kwon, Moon-Seok;Kim, Tae-Hwan
신성휴;박기자;권문석;김태완

  • Published : 20040000

Abstract

The purpose of this study was to analyze muscle activities and the characteristics of muscle recruiting patterns in Taekwondo kicking techniques using 8 college Taekwondo players(height: 177.1±3.2 cm, weight: 70.4±6.8 kg, career: 8.9±0.8 years). The EMG(Electromyography) technique was used to record muscle activities of both right and left sides of rectus abdominus, external oblique, internal oblique, erector spinae, latissimus dorsi. Ten surface electrodes were placed on the surface of the selected muscles and one ground electrode was also attached on the back of neck(C7). One video camera, force plate, synchronization photocell were also used to record the Taekwondo kinking motion to define 4 events and 3 phases for further analysis. The raw EMG data were filtered with band pass filter(10-450 Hz) to remove artifacts and then low pass filtered(4 Hz) to find the linear envelope which resemble muscle tension curve. This filtered EMG data were normalized to MVIC(Maximal Voluntary Isometric Contraction) for the purpose of comparison among the Taekwondo kicking Techniques(front kick, turning kick, downward kick). The normalized EMG data of measurement was to compare among the Taekwondo kicking Techniques(front kick, turning kick, downward kick) used on-way repeated ANOVA.(P < .05). The results of this study were as follows. 1. The right side of rectus abdominus activity was no significant kicking Techniques on the phase 1, 2, 3. With respect to left side of rectus abdominus activity, downward kick(23.1%) was significantly higher than front kick(5.1%) and turning kick(5.5%) on the phase 3. 2. The right side of external oblique activity was significant between downward kick(70.1%) and front kick(41%) on the phase 3. With respect to left side of external oblique activity, downward kick(39.1%) was significantly higher than turning kick(12.8%) on the phase 3. 3. The right side of internal oblique activity was significant between downward kick(95.2%) and turning kick(42.3%) on the phase 3. With respect to left side of internal oblique activity, downward kick(123.7%) was significantly higher than turning kick(39%) and front kick(31.4%) on the phase 2, downward kick(93.7%) was significantly higher than turning kick(33.4%) and front kick(27.9%) on the phase 3.

Keywords

References

  1. 강성철 (1998). 태권도 차기 동작의 분류에 따른 운동역학적 특성 분석 . 미간행 박사학위논문, 성균관대학교 대학원,
  2. 구희성 (1999). 태권도 나래차기 동작의 운동역학적 분석. 미 간행 박사학위논문, 성균관대학교 대학원
  3. 국기원 (1995). 태권도 교본. 서울:오성출판사
  4. 김규완 (2000). 초 · 중 · 고 · 대학교 태권도 선수의 앞차기 동작 비교 연구. 미간행 박사학위논문, 서울대학교 대학원
  5. 김길평 (1987). 태권도 앞돌려차기 굴신동작에 따른 근전도 분석, 전남대학교 스포츠과학 연구소, 스포츠과학 연구, 제 4집, 89-100
  6. 김상수, 박래준, 박윤기, 박홍기, 서태수, 이용덕 (1987). 도해기능해부학. 대구:학문사 207-232
  7. 김상복 (1997). 태권도 돌려 차기와 옆차기시 관절운동의 비교분석. 마간행 박사학위논문. 연세대학교 대학원
  8. 김원섭 (2001). 태권도 앞돌려차기의 운동 역학적 특성이 차기발에 미치는 효과. 미간행 박사학위논문, 성균관대학교 대학원,
  9. 김용이 (1999) . 태권도 옆차기 기술의 3차원적 운동역학적 분석. 미간행 박사학위논문, 연세대학교대학원
  10. 노민희, 용준환, 이용덕, 박미영 (2001). 인체해부학. 서울:청담.
  11. 임영태 (2002). 골프 스윙 동작시 허리부상 경험선수와 정상선수간의 요추 부하 비교 분석 . 한국체육학회지, 제41권(3). 209-517
  12. 박상희, 변연식, 이건식 (1978). 선형예측을 이용한 EMG 신호처기에 관한 연구. 전자공학회논문지, 24(2)
  13. 박은영, 김원호, 김경모, 조상현 (1999). 신발 굽의 높이와 신발착용기간이 대퇴근육 활동량에 미치는 영향. 한국전문물리치료학회지, 6(2), 32-42
  14. 장기준 (1985). 태권도 앞차기와 찍어차기의 운동학적 분석. 미간행 석사학휘논문, 연에대학교 대학원
  15. 최영렬 (1986). 태권도 앞돌려차기의 근전도적 연구. 미간행 석사학위논문, 경희대학교 대학원
  16. 최영환, 변연식, 김철주, 김성환 (1988). 적응 디지털 필터를 이용한 근육 피로도의측정. 전자공학회논문지, 25(9), 1074-1080
  17. 허진영 (1997). 운동제어 연구의 EMG 접근법. 한국스포츠심리학회, 97, 동계학술발표회
  18. 홍성수, 한정완 (1998). 제품디자인에 있어서 인간공학정용과정에 관한 연구, 대한인간공학회
  19. Abdel-Aziz, Y. I., Karara, H. M. (1971). Direct linear transformation from comparator coordinates into object coordinates in close-range photogratllllletry. Proceedings of ASP/UI Symposium on Close Range Photogrammetry. Falls Church, VA:American Society of Photogrammetry, 1-18
  20. Adrian, M. J., Cooper, J. M. (1989). The biomechanics of human movement . Indianapolis, Indiana:Benchmark Press
  21. Basmajian, J. V., & DeLuca, C. J. (1985). Description and analysis of the EMG Signal, Muscle Alive(5th ED.), Willian & Wikins, 65- 100
  22. Bunn, J. W. (1972). Scientific principles of coaching. Englewood, New jersey:Prentice-Hall
  23. Chaffin, D. B. (1969). Computerized biomechanical models developrrent of and use in studying gross body actions. Journal of Biomechanics 2, 429-441 https://doi.org/10.1016/0021-9290(69)90018-9
  24. Cram, J. R., Kasman, G. S., & Holts, J. (1998). Anatomy and physiology, Introduction to surface electromypgraphy, Aspen Publishers, Inc., 9-38
  25. lnmann VT, Ralston HJ, Todd F. (1981). Human walking. Baltimore:Williams and Wilkins, 44, 497-506
  26. Jensen, G, R., Schultz, G. W. & Bangerter, B. L. (1984). Applied kinesiology and Biomechanics. New York:McGraw-Hill
  27. Kwon, Y. H. (1994). KWON3D Motion Analysis Package Version2.1 User's Reference Manual. Anyang:Visual Technology Systems
  28. Hay, J. G. (1985). The biomechanics of sports technique(3rd ed.). Englewood Cliff:Prentice Hall, Inc
  29. Kao, J. T., Pink, M., Jobe, F. W. & Perry, J. (1995). Electromyographic analysis of the scapular muscles during a golf swing. American Joumal of Sports Medicine, 23, 5-19
  30. Mann RA. (1980). Biomechanics of walking, running, and sprinting. AM J Sports Med, 8(5), 345-350 https://doi.org/10.1177/036354658000800510
  31. Mcgill, S. M. & Norman, R. W. (1986). Partitioning of the L4-LS Dynamic Moment into Disc, Ligamentous, and muscular components during lifting. Spine, 11
  32. Leskinen, T. P. J., Stalhammar, H. R. Kuorinka, I. A. A. & Troup, J. D. G. (1983). A Dynamic analysis of spinal compression with different lifting techniques. Ergonomics, 26(6), 595-604 https://doi.org/10.1080/00140138308963378
  33. Lim, Y. T. (2000). Estimating lumbar spinal loads during a golf swing using an emg-assisted optimization model approach. Unpublished doctoral dissertation, University of Illinois, Urbana-Champaign
  34. Ounpuu S. (1994). The biomechanics of walking and running, Clin Sports Med, 13(4), 843-863
  35. Putnam, C. A. (1983). Interaction between segments during a kicking motion. In H Matsui, & K. Kobayashi(Eds.). Biomechanics VIIB(pp.. 688-694). Champaign, lllinoisHuman Kinetics Publishers
  36. Hosea, T. M., Gatt, C. J., Galli, K. M., Langrana, N. A. & Zawadsky, J. P. (1990). Biomechanical analysis of the golfers back. In Cochran (Eds.), Science and Golf:Proceedings of the First Worlk Scientific Congress of Golf(43-48). London : E&FN Spon
  37. Roozbazar, A. (1974). Biomechanics of lifting. In R. C. Nelson & C. A. Morehouse(Eds.), Biomechanics IV. (37-43). Baltimore: University Park Press
  38. Sorensen, H, Zacho, M. Simonsen, E. B., Dyhre-Poulsen & Klausen (1996). Dynamics of the martial arts high front kick. Journal of Sports Sciences, 14, 483-495
  39. U. S. Department of health and human serviecs (1992). Selected topics in surface elcetromyography for use in the occupational setting:Expert Perspectives, National Institute for Occupational Safety and Health
  40. Wickstrom, R. L. (1977). Fundamental motor patterns. Philadelphia:Lea & Febiger
  41. Winter, D .A. (1979). Biomechanics of human movemen t, New york: John Wily & Sons
  42. Zatsiorsky, V. M., Seluyanov, V. N., & Chugunova, L. (1990). In vivo body segment inertia parameters determination using a gammar scanner method. Biorrechanics of Human Movement: Application in Rehabilitation, Sports and ergonomics, 187-202. Worthington, OH : Bertec corporation
  43. Zernicke, R. F. (1978). Biomechanics of human movement. Department of Kinesiology, University of California in Los Angeles, California