Extracellular ATP is generated by ATP synthase complex in adipocyte lipid rafts

Kim, Bong-Woo;Choo, Hyo-Jung;Lee, Joong-Won;Kim, Ji-Hyun;Ko, Young-Gyu

  • Published : 2004.10.31

Abstract

Mitochondrial biogenesis is known to accompany adipogenesis to complement ATP and acetyl-CoA required for lipogenesis. Here, we demonstrated that mitochondrial proteins such as ATP synthase ${\alpha}\;and\;{\beta}$, and cytochrome c were highly expressed during the 3T3-L1 differentiation into adipocytes. Fully-differentiated adipocytes showed a significant increase of mitochondria under electron microscopy. Analysis by immunofluorescence, cellular fractionation, and surface biotinylation demonstrated the elevated levels of ATP synthase complex found not only in the mitochondria but also on the cell surface (particularly lipid rafts) of adipocytes. High rate of ATP $(more\;than\;30\;{\mu}M)$ synthesis from the added ADP and $P_{i}$ in the adipocyte media suggests the involvement of the surface ATP synthase complex for the exracellular ATP synthesis. In addition, this ATP synthesis was significantly inhibited in the presence of oligomycin, an ATP synthase inhibitor, and carbonyl cyanide m-chlorophenylhydrazone (CCCP), an ATP synthase uncoupler. Decrease of extracellular ATP synthesis in acidic but not in basic media further indicates that the surface ATP synthase may also be regulated by proton gradient through the plasma membrane.

Keywords

References

  1. Annu Rev Biochem v.67 The caveolae membrane system Anderson, R.G. https://doi.org/10.1146/annurev.biochem.67.1.199
  2. Science v.296 A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains Anderson, R.G.;Jacobson, K. https://doi.org/10.1126/science.1068886
  3. Mol Cancer Res v.1 Possible role of cell surface H+-ATP synthase in the extracellular ATP synthesis and proliferation of human umbilical vein endothelial cells Arakaki, N.;Nagao, T.;Niki, R.;Toyofuku, A.;Tanaka, H.;Kuramoto, Y.;Emoto, Y.;Shibata, H.;Magota, K.;Higuti, T.
  4. Exp Mol Med v.33 ATP-induced focal adhesion kinase activity is negatively modulated by phospholipase D2 in PC12 cells Bae, Y.S.;Ryu, S.H. https://doi.org/10.1038/emm.2001.26
  5. Biochem J v.369 Extensive temporally regulated reorganization of the lipid raft proteome following T-cell antigen receptor triggering Bini, L.;Pacini, S.;Liberatori, S.;Valensin, S.;Pellegrini, M.;Raggiaschi, R.;Pallini, V.;Baldari, C.T. https://doi.org/10.1042/BJ20020503
  6. Proteomics v.25 Proteomic analysis of detergent-resistant membrane rafts Blonder, J.;Hale, M.L.;Lucas, D.A.;Schaefer, C.F.;Yu, L.R.;Conrads, T.P.;Issaq, H.J.;Stiles, B.G.;Veenstra, T.D.
  7. Annu Rev Cell Dev Biol v.14 Functions of lipid rafts in biological membranes Brown, D.A.;London, E. https://doi.org/10.1146/annurev.cellbio.14.1.111
  8. Cell v.68 Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface Brown, D.A.;Rose, J.K. https://doi.org/10.1016/0092-8674(92)90189-J
  9. Electrophoresis v.21 Biochemical analysis of a caveolaeenriched plasma membrane fraction from rat liver Calvo, M.;Enrich, C. https://doi.org/10.1002/1522-2683(20001001)21:16<3386::AID-ELPS3386>3.0.CO;2-L
  10. Exp Mol Med v.35 Dysferlin in a hyperCKaemic patient with caveolin 3 mutation and in C2C12 cells after p38 MAP kinase inhibition Capanni, C.;Sabatelli, P.;Mattioli, E.;Ognibene, A.;Columbaro, M.;Lattanzi, G.;Merlini, L.;Minetti, C.;Maraldi, N.M.;Squarzoni, S. https://doi.org/10.1038/emm.2003.70
  11. J Biol Chem v.277 Interaction of the C-terminal domain of p43 and the alpha subunit of ATP synthase. Its functional implication in endothelial cell proliferation Chang, S.Y.;Park, S.G.;Kim, S.;Kang, C.Y. https://doi.org/10.1074/jbc.M108792200
  12. J Lipid Res v.44 HDL-mediated cholesterol uptake and targeting to lipid droplets in adipocytes Dagher, G.;Donne, N.;Klein, C.;Ferre, P.;Dugail, I. https://doi.org/10.1194/jlr.M300267-JLR200
  13. Nat Med v.10 PPARs and the complex journey to obesity Evans, R.M.;Barish, G.D.;Wang, Y.X. https://doi.org/10.1038/nm1025
  14. Proc Nat'l Acad Sci. USA v.100 Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors Foster, L.J.;de Hoog, C.L.;Mann, M. https://doi.org/10.1073/pnas.0631608100
  15. Cell v.106 Emerging themes in lipid rafts and caveolae Galbiati, F.;Razani, B.;Lisanti, M.P. https://doi.org/10.1016/S0092-8674(01)00472-X
  16. Exp Mol Med v.35 Lipid rafts are important for the association of RANK and TRAF6 Ha, H.;Kwak, H.B.;Lee, S.W.;Kim, H.H.;Lee, Z.H. https://doi.org/10.1038/emm.2003.38
  17. J Cell Biol v.96 Isolation of rat hepatocyte plasma membranes. I. Presence of the three major domains Hubbard, A.L.;Wall, D.A.;Ma, A. https://doi.org/10.1083/jcb.96.1.217
  18. Trends Biochem Sci v.24 Moonlighting proteins Jeffery, C.J. https://doi.org/10.1016/S0968-0004(98)01335-8
  19. Biochem Biophys Res Commun v.262 CD39 as a caveolar-associated ectonucleotidase Kittel, A.;Kaczmarek, E.;Sevigny, J.;Lengyel, K.;Csizmadia, E.;Robson, S.C. https://doi.org/10.1006/bbrc.1999.1254
  20. J Immunol v.162 TN Fa-mediated apoptosis is initiated in caveolae-like domains Ko, Y.G.;Lee, J.S.;Kang, Y.S.;Ahn, J.H.;Seo, J.S.
  21. Proteomics v.3 Monocyte lipid rafts contain proteins implicated in vesicular trafficking and phagosome formation Li, N.;Mak, A.;Richards, D.P.;Naber, C.;Keller, B.O.;Li, L.;Shaw, A.R. https://doi.org/10.1002/pmic.200390067
  22. Nature v.421 Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis Martinez, L.O.;Jacquet, S.;Esteve, J.P.;Rolland, C.;Cabezon, E.;Champagne, E.;Pineau, T.;Georgeaud, V.;Walker, J.E.;Terce, F.;Collet, X.;Perret, B.;Barbaras, R. https://doi.org/10.1038/nature01250
  23. Proc Nat'l Acad Sci. USA v.96 Angiostatin binds ATP synthase on the surface of human endothelial cells Moser, T.L.;Stack, M.S.;Asplin, I.;Enghild, J.J.;Hojrup, P.;Everitt, L.;Hubchak, S.;Schnaper, H.W.;Pizzo, S.V. https://doi.org/10.1073/pnas.96.6.2811
  24. Proc Nat'l Acad Sci. USA v.98 Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin Moser, T.L.;Kenan, D.J.;Ashley, T.A.;Roy, J.A.;Goodman, M.D.;Misra, U.K.;Cheek, D.J.;Pizzo, S.V. https://doi.org/10.1073/pnas.131067798
  25. Cell v.115 Lipid rafts: elusive or illusive? Munro, S. https://doi.org/10.1016/S0092-8674(03)00882-1
  26. Biochim Biophys Acta v.1615 Extracellular ATP as a signaling molecule for epithelial cells Schwiebert, E.M.;Zsembery, A. https://doi.org/10.1016/S0005-2736(03)00210-4
  27. Proteomics v.25 Comparative proteomics of human endothelial cell caveolae and rafts using two-dimensional gel electrophoresis and mass spectrometry Sprenger, R.R.;Speijer, D.;Back, J.W.;de Koster, C.G.;Pannekoek, H.;Horrevoets, A.J.
  28. J Clin Invest v.99 Surface expression, polarization, and functional significance of CD73 in human intestinal epithelia Strohmeier, G.R.;Lencer, W.I.;Patapoff, T.W.;Thompson, L.F.;Carlson, S.L.;Moe, S.J.;Carnes, D.K.;Mrsny, R.J.;Madara, J.L. https://doi.org/10.1172/JCI119447
  29. Blood v.101 Angiostatin selectively inhibits signaling by hepatocyte growth factor in endothelial and smooth muscle cells Wajih, N.;Sane, D.C. https://doi.org/10.1182/blood-2002-02-0582
  30. Mol Cell Biol v.23 Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone Wilson-Fritch, L.;Burkart, A.;Bell, G.;Mendelson, K.;Leszyk, J.;Nicoloro, S.;Czech, M.;Corvera, S. https://doi.org/10.1128/MCB.23.3.1085-1094.2003
  31. Anal Chem v.76 Proteomic analysis of integral plasma membrane proteins Zhao, Y.;Zhang, W.;Kho, Y.;Zhao, Y. https://doi.org/10.1021/ac0354037