Effects of Water Content and Pore Water Contamination on Electrical Resistivity of Unsaturated Sand

함수비와 간극수 오염이 불포화 사질토의 전기비저항에 미치는 영향

Oh, Myoung-Hak;Lee, Ki-Ho;Park, Jun-Boum
오명학;이기호;박준범

  • Published : 2004.01.31

Abstract

Laboratory experiments were performed to evaluate the effect of water content and pore water contamination on electrical resistivity of unsaturated sand. The electrical resistivity of unsaturated sand decreased, as gravimetric water content or dry unit weight increased. Electrical resistivity can be expressed as a function of volumetric water content, which reflects the effects of gravimetric water content and compaction degree. As volumetric water content increased, electrical resistivity exponentially decreased. Since volumetric water content can be expressed as porosity times degree of saturation, the regression equation is similar in its formation with the Archie's equation which is for saturated sand. The electrical resistivity of soil also decreased by the addition of landfill leachate. These results indicate that electrical resistivity measurements method has a potential in the evaluation of pore water contamination.

수분함량과 간극수의 오염에 의한 불포화 사질토 지반의 전기비저항의 변화를 평가하기 위하여 실내실험을 수행하였다. 불포화 사질토의 전기비저항은 함수비나 건조단위중량이 증가함에 따라 감소하는 경향을 나타내었다. 함수비의 증가에 의한 전기비저항 감소와 다짐정도의 증가에 의한 간극수의 연결성 증가에 의한 전기비저항 감소를 모두 반영한 인자로 체적함수비를 도입하였으며, 불포화 사질토 지반의 전기비저항은 체적함수비의 증가에 따라 지수함수적으로 감소하는 함수관계를 나타내었다. 체적함수비는 간극률과 포화도의 곱으로 표현되므로 체적함수비와 전기비저항과의 상관관계식은 포화 사질토 지반에 적용되는 Archie식에 포화도가 추가된 형태의 식으로 나타낼 수 있었다. 이온성 물질들을 많이 포함하고 있는 침출수에 의한 간극수의 오염은 지반의 전기비저항 감소를 유발하였다. 이 결과에 의하면 지반의 전기비저항 측정에 의하여 간극수의 오염도 평가가 가능함을 알 수 있다.

Keywords

References

  1. 한국지반공학회 v.17 전기저항 측정기법을 이용한 오염물질 누출감지시스템의 개발: I. 오염물질에 의한 지반의 전기적 특성 변화 오명학;박준범;김영진;홍성완;이용훈
  2. 대한환경공학회 v.25 오염된 사질토 지반의 측정주파수에 따른 유전상수 변화 이주형;오명학;박준범
  3. Journal of Geotechnical Engineering v.122 no.5 Electrical resistivity of compacted clays Abu-Hassanein, Z.S.;Benson, C.H.;Blotz, L.R. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(397)
  4. Trans. AIME v.146 The electrical resistivity log as an aid in determining some reservoir characteristics Archie, G.E. https://doi.org/10.2118/942054-G
  5. Journal of Petroleum Technology v.13 The Significance of particle shape in formation factor-porosity relationship Atkins, E.R.;Smith, G.H. https://doi.org/10.2118/1560-G-PA
  6. Geology prediction: developing tools and techniques for the geophysical identification and classification of sea-floor sediments, U.S. Dept. Commerce Publication, NOAA Tech. rep. ERL224-MMT-C2 Barnes, B.B.;Corwin, R.F.;Beyer, J.H.;Hildenbrand, T.G.
  7. Canadian Geotechnical Journal v.27 Development and use of an electrical resistivity cone for groundwater contamination studies Campanella, R.G.;Weemees, I. https://doi.org/10.1139/t90-071
  8. The use of cone penetration testing to obtain environmental data Horsnell, M.R.
  9. Marine Geotechnology v.1 no.2 An electrical resistivity method for evaluating the in-situ porosity of clean marine sands Jackson, P.D. https://doi.org/10.1080/10641197509388156
  10. Journal of Geotechnical Engineering v.120 no.2 Electrical-resistivity measurements for evaluating compacted-soil liners Kalinski, R.J.;Kelly, W.E. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:2(451)
  11. Journal of Environmental Engineering v.123 no.2 Identifiaction of contaminated soils by dielectric constant and electrical conductivity Kaya, A.;Fang, H.Y. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:2(169)
  12. Electrical methods in geophysical prospecting Keller, G.V.;Frischknecht, F.C.
  13. Fundamentals of Soil Behavior Mitchell, J.K.
  14. Canadian Geotechnical Society Newletter v.18 no.4 Measurement of in situ density in sandy silty soil Kroezen, M.
  15. Geotechnique v.34 no.2 The electrical resistivity characteristics of compacted clays McCarter, W.J. https://doi.org/10.1680/geot.1984.34.2.263
  16. Proceedings of GeoEng2000, International Conference on Geotechnical & Geological Engineering v.2 Laboratory tests for the development of the contaminant leakage detection system in soil Oh, M.H.;Park, J.B.
  17. Geoenvironment 2000 Application of resistivity cone penetration testing for qualitative delineation of creosote contamination in saturated soils Okoye, C.N.;Cotton, T.R.;O'Meara, D.
  18. Journal of Geotechnical and Geoenvironmental Englineering v.128 Ohmic conductivity of a compacted silty clay Rinaldi, V.A.;Cuestas, G.A. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(824)
  19. Journal of Applied Geophysics v.40 Electrical properties of water in clay and silty soils Saarenketo, T. https://doi.org/10.1016/S0926-9851(98)00017-2
  20. Journal of Geotechnical Engineering v.121 no.3 Polarization and conduction of clay-water-electrolyte systems Shang, J.Q.;Lo, K.Y.;Inculet, I.I. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:3(243)
  21. Journal of Geotechnical Engineering v.107 Relationship of electrical dispersion to soil properties Smith, S.S.;Arulanandan, K.
  22. Use of piezometric cone penetation testing with electrical conductivity measurements (CPTU-EC) for detection of hydrocarbon contamination in saturated granular soils, Current practices in groundwater and vadose zone investigations Strutynsky, A.I.;Sandiford, R.E.;Cavalier, D.
  23. Proceeding of International Symposium on Engineering Properties of Sea-Floor Soils and their Geophyical Identification Acoustic and electrical techniques for seafloor sediment identification Taylor Smith, D.
  24. Proceeding of Specialty Conference on In-situ Measurement of Soil properties Electrical resistivity method for determining volume changes that occur during a pressuremeter test Windle, D.;Wroth, C.P.
  25. Proceedings of Geotechnical Engineering Congress Penetration Testing for groundwater contaminants Woeller, D.J.;Weemees, I.;Kohan, M.;Jolly, G.;Robertson, P.K.
  26. Petrol. Trans. AIME v.198 Formation factors of unconsolidated porous media: Influence of particle shape and effects of cementation Wyllie, M.R.J.;Gregory, G.R.
  27. Environmental Geology v.43 Laboratory study of Iandfill leachate effect on resistivity in unsaturated soil using cone penetrometer Yoon, G.L.;Oh, M.H.;Park, J.B. https://doi.org/10.1007/s00254-002-0649-1