Improvement of Water Area Classification During a Flood Using RADARSAT SAR Imagery and Terrain Informations In Mountainous Area

RADARSAT SAR 영상과 지형정보를 이용한 홍수시 산악지역의 수계영역 추출 정확도 향상

Sohn, Hong-Gyoo;Song, Yeong-Sun;Chang, Hoon
손홍규;송영선;장훈

  • Published : 2004.03.31

Abstract

The brightness values of Synthetic Aperture Radar (SAR) imagery are largely influenced by the local terrain relief. In water areas such as oceans and rivers with relatively flat areas, SAR imagery has lower backscattered signals than other surfaces. Although SAR imagery with its own energy sources is very applicable to flood monitoring due to its sensitivity to the water area, several distortions caused by local terrain relief must be carefully considered before actual classification process. Since backscattering coefficients of shadow area are very similar to those of the water area, it is essential to remove the radiometric distortion caused by local relief especially in mountainous areas. In this study we tested four different cases of local terrain relief compensation processes based on the preprocessing of input SAR imagery and local surface information such as elevation and slopes for accurate water extent. The case when the input RADARSAT SAR imagery is classified with the local slope information is best in terms of flood area estimation, even in small streams and watershed of different elevation categories. Consequently in mountainous areas the combination of SAR imagery and slope information is the best combination in the estimation of inundated areas during the flood.

SAR영상의 밝기값은 지형의 기복에 영향을 받는다. 특히, 하천이나 강과 같은 수계지역에 대해서는 돌아오는 역산란 에너지가 적기 때문에 SAR 영상은 광학영상에 비해서 수계지역이 뚜렷하게 나타나는 반면지형의 기복에 따라 여러 가지 복잡한 왜곡현상이 발생한다. 지형의 기복에 의한 지형효과왜곡이 발생하는 지역은 수계지역과 비슷한 반사특성(낮은 dB값)을 보임으로서 수계지역 분류 시 많은 오류를 발생시킨다. 따라서 일반적으로 대상지역이 평지인 경우 기본적인 방사보정만을 수행하더라도 정확한 수계지역을 분류해 낼 수 있지만 산악지역으로 구성된 경우, 방사보정 외에 지형효과왜곡을 보정해야 하는 등의 복잡한 과정을 거쳐야 한다. 본 연구에서는 RADARSAT 영상으로부터 수계지역의 분류를 위해 방사보정, 지형효과 왜곡 보정, 고도자료 및 경사도 자료를 이용하여 수계영역을 추출을 수행하였다. 그 결과 RADARSAT SAR영상만을 활용할 경우 추출 정확도에 한계를 보였으며, RADARSAT SAR 영상에 지형정보를 추가로 활용함으로서 정확한 수계영역을 추출할 수 있었다. 특히 SAR영상과 경사도 자료를 동시에 활용하여 산악지역의 수계지역을 추출하는 것이 가장 효과적임을 알 수 있었다.

Keywords

References

  1. 한국수자원학회 논문집 v.33 no.4 시계열 위성레이더 영상을 이용한 침수지 조사 이규성;김양수;이선일
  2. 재해연보 행정자치부 중앙재해대책본부
  3. Canadian J. of Remote Sensing v.24 no.1 RADARSAT Flood Mapping in the Peace-Athabasca Delta, Canada Adam, S.J.;Wiebe, M. Collins;Pietroniro, A.
  4. IEEE Transactions on Geoscience and Remote Sensing v.39 no.2 Amazon Floodplain Water Level Changes Measured with Interferometric SIR-C Radar Alsdorf, D.E.;Smith, L.C.;Melack, J.M.
  5. Remote Sensing of Environment v.72 Synergistic Remote Sensing of Lake Chad: Variability of Basin Innudation Birkett, C.M.
  6. Int. J. Remote Sensing v.19 no.7 Orbital SAR remote sensing of a river flood wave Brakenridge, G.R.;Tracy, T.T.;Knox, J.C.
  7. Remote sensing and Hydrology 2000 Proceedings of a symposium Characterization of west african shallow flood plains with L- and C-band radar Giesen, N.V.D.
  8. PE & RS v.45 no.4 Sampling designs to test land-use map accuracy Hay, A.M.
  9. IEEE Transaction on Geoscience and Remote Sensing v.33 no.4 Delineation of inundated area and vegetation along the Amazon flood-plain with the SIR-C Synthetic Aperture Radar Hess, L.L.;Melack, J.M.;Filoso, S.;Wang, Y.
  10. Proceedings of the 18th Asian Conference all Remote Sensing Flood monitoring in central plane of Thailand using JERS-1 SAR data Honda, K.;Cansius, F.X.J.; Sah, B.P.
  11. Remote Sensing of Environment v.85 Waterline mapping in flooded vegetation form airborne SAR imagery Horritt, M.S.;Mason, D.C.;Cobby, D.M.;Davenport, I.J.;Bates, P.D.
  12. Int. J. Remote Sensing v.23 no.18 Dynamic monitoring and damage evaluation of flood in north-west Jilin with remote sensing Liu, Z.;Huang, F.F.;Li, L.;Wan, E.
  13. Proceedings of the 20th Asian Conference on Remote Sensing Flood detection using multitemporal RADARSAT and ERS data Ping, C.;Soo, C.L.;Hock, L.
  14. Can. J. Remote Sensing v.29 no.1 Land cover mapping from RADARSAT stereo images in a mountainous area of southern Argentina Peng, X.;Wang, J.;Raed, M.;Grai, Jorge
  15. Remote Sensing of Environment v.59 Detecting Seasonal Flooding Cycles in Marshes of the Yucatan Peninsula with SIR-C Polarimetirc Radar Imagery Pope, K.O.;Rejmankova, E.;Paris, J.F.;Woodruff, R.
  16. Remote Sensing of Environment v.73 Spatial Filtering of Radar Data (RADARSAT) for Wetlands (Brackish Marshes) Classification Rio, J.N.R.;Lozano-Carcia, D.F.
  17. RADARSAT Data Products Specifications RSI
  18. Proc. of Geomatics in the Era of RADARSAT Geometric and Radiometric Calibration of RADARSAT Image Small, D.;HoIecz, F.;Nuesch, D.;Barmettler, A.
  19. Korean Journal of Geomatics v.2 no.1 Estimation of the Flood Area Using Multi-temporal RADARSAT SAR Imagery Sohn, H.G.;Song, Y.S.;Yoo, H.H.;Jung, W.J.
  20. Remote Sensing of Environment v.79 Radiometric slope correction for forest biomass estimation from SAR data in the Western Sayani Mountains, Siberia Sun, G.;Ranson, K.J.;Kharuk, V.I.
  21. PE & RS v.67 no.7 Mapping Seasonal Flooding in Forested Wetlands Using Multi-Temporal Radarsat SAR Townsend, P.A.
  22. Hydrological Process v.16 A multi-sensor approach to wetland flood monitoring Tayro, J.;Pietroniro, A.;Maritz, L.W.;Prowse, T.D.
  23. IEEE Transactions on Geoscience and Remote Sensing v.GE-34 no.5 Radiometric Slope Correction of Synthetic-Aperture Radar Images Ulander, M.H.
  24. IEEE Transactions on Geoscience and Remote Sensing v.GE-31 no.5 The effect of Topography on SAR Calibration van Zyl, J.J.;Campion, B.D.;Dubios, P.;Shi, J.
  25. Int. J. Remote Sensing v.22 no.8 Multitemproal monitoring of soil moisture with RADARSAT SAR during the 1997 Southern Great Plain hydrology experiment Wickel, A.J.;Jackson, T.J.