Behavior of the soil residues of the fungicide hexaconazole in a rice plants-grown microecosystem (pot)

살균제 hexaconazole 토양잔류물의 벼 재배 microecosystem(pot)중 행적

  • Kyung, Kee-Sung (Hazardous Substances Division, Department of Crop Life Safety, National Institute of Agricultural Science & Technology) ;
  • Lee, Byung-Moo (Hazardous Substances Division, Department of Crop Life Safety, National Institute of Agricultural Science & Technology) ;
  • Lee, Jae-Koo (Department of Agricultural Chemistry, College of Agriculture, Chungbuk National University)
  • 경기성 (농업과학기술원 농산물안전성부 유해물질과) ;
  • 이병무 (농업과학기술원 농산물안전성부 유해물질과) ;
  • 이재구 (충북대학교 농과대학 농화학과)
  • Published : 2004.09.30

Abstract

In order to elucidate the behavior of the fungicide hexaconazole in soil and rice plants, rice plants were grown for 42 days in a microecosystem (pot) containing fresh and 28 day-aged soil residues of $[^{14}C]$hexaconazole. The amount of $^{14}CO_2$ evolved during 28 days of aging was 0.11 % of total $^{14}C$-radioactivity treated and the averaged weekly degradation rate was 0.03%. Mineralization rates for 42 days of rice cultivation on fresh and aged paddy soils were 0.67% of the total $^{14}C$ in case of non-rice planting on aged soil and 1.17% in case of rice planting on aged soil, whereas 1.25% in non-rice planting on fresh soil and 1.72% in case of rice planting on fresh soil, suggesting that the amounts of $^{14}CO_2$ were evolved higher from fresh soils than aged ones and from rice-planting soils than non-planting ones. The amounts of volatiles collected were very low as background levels. Most of $^{14}C$-Radioactivity was remained in soil after 42 days of rice cultivation and $^{14}C$ absorbed through rice roots was distributed more in shoots than roots and translocated into the edge of shoots of rice plants. Amounts of non-extractable $^{14}C$ in soils were higher in rice planted soil than in non-planting soil. The distribution of non-extractable $^{14}C$ was increased in the order of humin>fulvic acid>humic acid. The amounts of $^{14}C$ translocated into rotational crop Chinese cabbage were 2.36 and 3.69% of the total $^{14}C$ in case of rice planted soil containing fresh and aged residues, respectively, suggesting that small amounts of $[^{14}C]$hexaconazole and its metabolite(s) were absorbed and their bound residues were more available than their fresh ones to Chinese cabbage.

살균제 hexaconazole의 벼 및 토양 중 행적을 구명하기 위하여 $[^{14}C]$hexaconazole의 신생 및 숙성 토양 잔류물을 함유한 microecosystem(pot)에서 42일간 벼를 재배하였다. 28일간의 숙성기간중 방출된 $^{14}CO_2$의 양은 총처리방사능의 0.11%이고 주당 평균분해율은 0.03%이었다. 42일간의 벼 재배기간중 방출된 $^{14}CO_2$의 양은 숙성토양에 벼를 재배하지 않은 처리구와 벼를 재배한 처리구에서 각각 총처리방사능의 0.67%와 1.17%인 반면 숙성하지 않은 신생토양의 경우는 각각 1.25%와 1.72%로서 숙성토양보다는 신생토양에서, 벼를 재배하지 않은 경우보다는 재배한 경우에 무기화율이 더 높은 것으로 나타났으며. 휘발율은 미미하였다. 벼 재배 후 방사능은 주로 토양에 분포하였으며, 벼에 흡수된 방사능은 벼 지상부의 선단으로 집적되었다. 토양중 추출불가 결합잔류물의 양은 벼를 재배할 경우 증가하였으며, 그 분포양은 humin>fulvic acid>humic acid순이었다. 후작물인 배추에 흡수이행된 $^{14}C$는 hexaconazole의 신생 및 숙성잔류물을 함유한 벼 재배토양에서 각각 총처리 방사능의 2.36%와 3.69%로써 소량이 흡수이행되었으며, 신생잔류물보다 숙성잔류물의 이용률이 더 높았다.

Keywords

References

  1. Archer, T. E., J. D. Stockes, and R. S. Bringhurst (1977) Persistence and biodegradation of carbofuran in flooded soils. J. Agric. Food Chem. 25:536-541
  2. Chen, T., C. Dwyre-Gygax, S. T. Hadfield, C. Willetts, and C. Breuil (1996) Development of an enzyme-linked immunosorbent assay for a broad spectrum triazole fungicide: hexaconazole. J. Agric. Food Chem. 44(5):1352-1356 https://doi.org/10.1021/jf950673e
  3. Curl, E. A. and B. Truelove (1986) Root Exudates, In The Rhizosphere, Springer-Verlag, Berlin, pp. 55-62
  4. Fuhremann, T. W. and E. P. Lichtenstein (1980) A comparative study of the persistence, movement and metabolism of six carbon-14 insecticides in soil and plants. J. Agric. Food Chem. 28:446-452
  5. Kimura, M., H. Wade and Y. Takai (1977) Studies on the rhizosphere of paddy rice (part 4), Physical and chemical features of rhizosphere(II), Jpn, J. Soil Sci. Plant Nutr. 48(11):540-548
  6. Kumar, Y. and M. S. Mithyantha (1990) Metabolism of hexaconazole in sandy loam soil, Company report, Rallis India LTD.
  7. Lee, J. K., K S. Kyung and W. B. Wheeler (1991) Rice plant uptake of fresh and aged residues of carbofuran from soil. J. Agric. Food Chem. 39:588-593
  8. Lee, J. K., F. Fuhr, and W. Mittelstaedt (1988) Formation and bioavailability of bentazon residues in a German and Korean agricultural soil. Chemosphere 17:441-450 https://doi.org/10.1016/0045-6535(88)90233-0
  9. Nicholas, D. J. D., K. F. Baker and W. C. Snyder (eds) (1965) Ecology of soil-borne plant pathogens, Univ. Calif. Press, Berkely, pp.210-218
  10. The Pesticide Manual (2003) British Crop Protection Council, Thirteenth edition, pp. 533-534
  11. Venkateswarlu, K and N. Sethunathan (1978) Degradation of carbofuran in rice soils as influenced by repeated applications and exposure to aerobic conditions following anaerobiosis. J. Agric. Food Chem. 26(5):1148-1151
  12. Weissler, M. S., R. Mistry and I. R. Hill (1988) Hexaconazole : Degradation in aerobic and anaerobic soils, Compony report, Plant Protection Division, ICI
  13. 경기성, 이병무, 임양빈, 이영득, 한성수, 최주현, 김진화, 류갑희, 이재구 (2004) 살균제 hexaconazloe의 흡착 및 용탈 특성. 농약과학회지 8(1):46-53
  14. 농약사용지침서 (2004) 농약공업협회. pp. 296-297
  15. 안기창, 경기성, 이재구 (1998) Micro-ecosystem(pot)중 제초제 quinclorac 토양잔류물의 행적. 한국환경농학회지 2(3):76-83
  16. 이재구, 경기성, F. Fuhr (1989) 토양중 신생 및 숙성 bentazon 잔류물의 벼에 의한 흡수. 한국농화학회지 32:393-400
  17. 이재구, 천삼영, 경기성 (1988) 토양 중 제초제 bentazon 잔류물의 콩과 무에 의한 흡수. 한국환경농학회 7(1):1-7