DOI QR코드

DOI QR Code

Assessment on the Content of Heavy Metal in Orchard Soils in Middle Part of Korea

중부지역 과수원 토양중의 중금속 함량 평가

  • Jung, Goo-Bok (National Institute of Agricultural Science and Technology, RDA) ;
  • Kim, Won-Il (National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Jong-Sik (National Institute of Agricultural Science and Technology, RDA) ;
  • Shin, Joung-Du (National Institute of Agricultural Science and Technology, RDA) ;
  • Kim, Jin-Ho (National Institute of Agricultural Science and Technology, RDA) ;
  • Yun, Sun-Gang (National Institute of Agricultural Science and Technology, RDA)
  • 정구복 (농업과학기술원 환경생태과) ;
  • 김원일 (농업과학기술원 환경생태과) ;
  • 이종식 (농업과학기술원 환경생태과) ;
  • 신중두 (농업과학기술원 환경생태과) ;
  • 김진호 (농업과학기술원 환경생태과) ;
  • 윤순강 (농업과학기술원 환경생태과)
  • Published : 2004.03.31

Abstract

Objectives of this study were to monitor the distribution of heavy metals, to compare extractable heavy metal with total content and to investigate the relationships between soil physico-chemical properties and heavy metals in orchard soil. Sampling sites were 48 in Gyeonggi, 36 in Gangwon, 36 in Chungbuk, and 44 in Chungnam, Soils were collected farm form two depths, 0 to 20 and 20 to 40 cm (here after referred to as upper and lower layers) from March to May in 1998. Total contents of heavy metal in soils were analyzed by ICP-OES after acid digestion ($HNO_3$:HCl:$H_2O_2$) whereas extractable contents were measured after successive extraction of 0.1N-HCl, 0.05 M-EDTA, and 0.005 M-DTPA. Mercury was analysed by mercury atomizer. The average contents of Cd Cu, and Pb in the extractant with 0.1N-HCl at upper layer were 0.080, 4.23, and 3.42 mg/kg, respectively. As content in the extractant with 1N-HCl was 0.44 mg/kg, and total contents of Zn, Ni and Hg were 78.9, 16.1, and 0.052 mg/kg, respectively. The ratios of concentrations of heavy metals to threshold values (Cd 1.5, Cu 50, Pb 100, Zn 300, Ni 40, Hg 4 mg/ke in Soil Environmental Conservation Act in Korea (2001) were low in the range of $1/2.5{\sim}1/76.9$ in orchard soils. The ratios of extractable heavy metal to total content ranged $5.4{\sim}9.21%$ for Cd, $27.9{\sim}47.8%$ for Cu, $12.6{\sim}21.8$% for Pb, $15.8{\sim}20.3%$ for Zn, $5.3{\sim}6.3%$ for Ni, and $0.7{\sim}3.6%$ for Zn, respectively. Cu and Pb contents in 0.05 M-EDTA extractable solution were higher than those in the other extractable solution. Total contents of Cd, Ni and Ni in soils were negatively correlated with sand content but positively correlated with silt and clay contents. Ratios of extractable heavy metal to total content were negatively correlated with clay content but ai and Ni contents were positively correlated with soil pH, organic matter, and available phosphorous. Therefore, the orchard soil was safe because the heavy metal contents of orchard soil were very low as compared to its threshold value in the Soil Environmental Conservation Act. However, it need to consider the input of agricultural materials to the agricultural land for farming practices for assessment of heavy metals.

우리나라 중부지역에서 1998년 $3{\sim}5$월에 과수원 토양 164지점(경기 48, 강원 36, 충북 36, 충남 44지점)을 대상으로 표토($0{\sim}20\;cm$)와 심토($20{\sim}40\;cm$)로 나누어 채취하여 토양내 중금속함량과 분포특성, 총함량에 대한 침출액별 가용성 함량비율 및 토양 이화학성과의 관계를 비교 검토한 결과는 다음과 같다. 과수원 토양중 0.1N-HCl 침출성 평균함량은 Cd 0.080, Cu 4.23, Fb 3.42 mg/ks 1N-HCl 침출성 As 평균함량은 0.44 mg/kg, 중금속 총함량은 Zn 78.9, Ni 16.09 및 Hg 0.052 mg/kg 이었다. 과수원 토양내 중금속 평균함량은 우리나라 토양환경보전법의 토양오염 우려기준(Cd 1.5, Cu 50, Pb 100, Zn 300, Ni 40, Hg 4 mg/kg)과 비교하여 $1/2.5{\sim}1/76.9$ 수준으로 안전하였다. 토양의 중금속 총함량에 대한 침출액별 가용성 함량비율은 Cd $5.4{\sim}9.2$, Cu $27.9{\sim}47.8$, Pb $12.6{\sim}21.8$, Zn $15.8{\sim}20.3$, Ni $5.3{\sim}6.3$, Cr $0.7{\sim}3.6%$ 이었고, 특히 0.05 M-EDTA 침출성 Cu 및 Pb의 침출비율이 상대적으로 높게 나타났다. 토양내 Cd, Pb 및 Ni의 총함량은 모래함량과 부의상관, 미사와 점토함량과는 정의 상관을 보였다. 토양의 중금속 총함량에 대한 침출액별 가용성 함량비율은 점토함량과는 부의 상관을 보였으며, Zn과 Ni의 함량비율은 토양 pH값, 유기물 및 유효인산 함량과 정의 상관을 보였다. 이상의 결과에서 볼 때 과수원 토양의 중금속 함량은 토양환경보전법의 토양오염기준보다 매우 낮아 안전하였으나 영농활동에 의한 영향으로 볼 수 있는 농도수준이 검출된 일부 토양에서 조사되었다. 따라서 최근의 친환경농업 측면으로 볼 때 영농형태별 중금속의 분포 및 농업자재에 의한 농경지내 중금속 부하량에 근거하여 중금속 오염유무를 평가할 수 있는 판단기준에 대한 연구가 필요하다고 생각된다.

Keywords

References

  1. Fergusson, J. E. (1990) The heavy elements ; Chemistry, environmental impact and health effects, Pergamon press
  2. Lim S. K. (1995) Studies on the establish of soil environmental standard in Korea, Korea Committee for Environmental Science and Research p.125-135
  3. NIAST (National Institute of Agricultural Science and Technology) (1999) Monitoring of the soil fertility in major agricultural land, A counter mersuring studies to the changes of agricultural environment, p.3-60
  4. Anderson, M. K., Refsgaard, A, Raulund-Rasnrussem, K, Strobel, B. W. and Hansen, C. B. (2002) Content, distribution, and solubility of cadmium in arable and forest soils, Soil Sci. Soc. Am J. 66, 1829-1835 https://doi.org/10.2136/sssaj2002.1829
  5. Holmgren, G. G. S., Meyer, M. W., Chaney, R. L. and Daniels, R. B. (1993) Cadmium, Lead, Zinc, Copper, and Nickel in Agricultural Soils of the United States of America, J. Environ. Qual 22, 335-348 https://doi.org/10.2134/jeq1993.00472425002200020015x
  6. Kabala, C. and Singh, B. R. (2001) Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter, J. Environ. Qual 30, 485-492 https://doi.org/10.2134/jeq2001.302485x
  7. Ma, Lena Q., Fang Tan, and Harris, W. G. 1997) Concentratians and distribution of eleven metals in Florida soils, J. Environ. Qual. 26, 769-775 https://doi.org/10.2134/jeq1997.00472425002600030025x
  8. Jung, K. Y., Kwon, S. I., Jung, G. B., Kim, W. I. and Jeong, Y. G. (1997) Effect of long term application of sewage sludge on distribution and availability of heavy metals in soil-plant system, Fourth International Gmferenee, East and Southeast Asia Fedration of Soil Science Societies, p.335-347
  9. Ullrich, S. M, Ramsey, M H and Helios-Rybicka, E. (2000) Total and exchangeable of heavy metals in soils near Bytom, an area of Pb/Zn mining and smelting in Upper Silesia, Poland, Applied Geochemistry 14, 187-196 https://doi.org/10.1016/S0883-2927(98)00042-0
  10. McGrath, D. (1996) Application of single and sequential extraction procedures to polluted and unpolluted soils, The Science of The Total Environment 178, 37-44 https://doi.org/10.1016/0048-9697(95)04795-6
  11. Jung, G. B., Jung, K. Y., Cho, G. H., Jung, B. K. and Kim, K. S. (1998) Heavy metal contents in soils and vegetables in the plastic film house, J. Korean Soc. Soil Sci. Fert 30, 152-160
  12. Jung, G. B., Kim, H. C., Jung, K. Y, Jung, B. K. and Kim, W. I. (1998) Heavy metal contents in upland soils and crops in Korea, J. Korean Soc. Soil Sci. Fert 31, 225-232
  13. Kim, B. Y., Jung, B. K, Choi, J. W, Yun E. S. and Choi, S. (1995) Heavy metals in paddy soils of Korea, J. Korean Soc. Soil Sci. Fert 28, 295-300
  14. Ryu, S. H, lee, J. R and Kim, K. H. (1995) Sequential extraction of Cd, Zn, Cu, and Pb from the polluted paddy soils and their behavior, J. Korean Soc. Soil Sci. Fert 28, 207-217
  15. Jung, G. B., Kim, W. I., MOon, K H and Ryu, I. S. (2000) Extraction methods and availability for heavy metal in paddy soils near abandoned mining areas, Kor. J. Environ. Agric. 19, 314-318
  16. Jung, G. B., Kim, W. I. and Hyeon, G. S. (2000) Studies on the distribution of background concentrations of heavy metal of soils in Korea, Annual Report Dept. of AgmEnvironment, NIAST (National Institute of Agricultural Science and Technology) p.24-31
  17. Jeevan Rao, K. and Shantaram, M. V. (1997) Relationship between soil characteristics and heavy metals in municipal solid waste treated soils, Fourth International Canference on the Biochemistry of trace elements p.157-158
  18. Ramos, L., Hernandez, L. M., and Gonzalez, M. J. (1994) Sequential fractionation of copper, lead, cadmium, and zinc in soils from or near Donana National Park, J. Environ. Qual. 23, 50-57 https://doi.org/10.2134/jeq1994.00472425002300010009x
  19. Th Matos, A. T., Fontes, M. P. F., da Costa. L. M and Martinez, M A (2000) Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils, Environmental Pollution 111, 429-435 https://doi.org/10.1016/S0269-7491(00)00088-9
  20. 농촌진흥청 농업과학기술원(1988) 토양화학분석법
  21. 환경부(2001) 토양오염공정시험법
  22. U.S.A EPA (1992) Acid digestion of sediments, sludge, and soils, Method 3050A
  23. 환경부 (2001) 토양환경보전법
  24. 농촌진흥청 농업과학기술원 (1999) 농경지 시비양분의 환경영향평가 실증시험; 농가 비료이용 실태조사, 농촌진흥청 대형과제완경보고서, p.1-46
  25. 농업과학기술원 농업환경부 (2002) 농경지의 중금속 부하량 평가연구, 미발표자료
  26. Novotny, V. (1998) Nonpoint Pollution and Urban Stannwater Management; Water Quality Management library (Vol. 9), Second edition, Technomic Pub Co.

Cited by

  1. Current research trends for heavy metals of agricultural soils and crop uptake in Korea vol.31, pp.1, 2012, https://doi.org/10.5338/KJEA.2012.31.1.75
  2. Characteristics of Heavy Metal Accumulation and Removing from Soil using Korean Native Plant, Liriope platyphylla for Phytoremediation vol.23, pp.1, 2014, https://doi.org/10.5322/JESI.2014.23.1.61