DOI QR코드

DOI QR Code

Availability of Silicate Fertilizer and its Effect on Soil pH in Upland Soils

밭토양에 처리된 규산질 비료의 유효화와 토양반응 교정효과

  • Cho, Hyun-Jong (Division of Life and Environmental Science, Daegu University) ;
  • Choi, Hee-Youl (Division of Life and Environmental Science, Daegu University) ;
  • Lee, Yong-Woo (Division of Life and Environmental Science, Daegu University) ;
  • Lee, Yoon-Jung (Division of Life and Environmental Science, Daegu University) ;
  • Chung, Jong-Bae (Division of Life and Environmental Science, Daegu University)
  • 조현종 (대구대학교 생명환경학부) ;
  • 최희열 (대구대학교 생명환경학부) ;
  • 이용우 (대구대학교 생명환경학부) ;
  • 이윤정 (대구대학교 생명환경학부) ;
  • 정종배 (대구대학교 생명환경학부)
  • Published : 2004.06.30

Abstract

Although silicon (Si) has been Down to be an essential element fer rice growth, the optimum soil level of Si for upland crops remains unestablished. This study was conducted to estimate the availability of Si fertilizer in upland soils, and also effect of the Si fertilizer on soil pH was examined. Different application rates of Si fertilizer were tested using faur soils of different available Si levels and pHs in a series of laboratory incubation study. The treatments included Si fertilizer levels of 100, 200, and 300 kg/10a. Also to examine the effects of compost and lime on the availability of Si fertilizer in upland soil, treatment of silicate fertilizer 200 kg/10a + compost 1,000 kg/10a and lime alone treatment were included. Changes of Si availability in the soils during the incubation period were measured by 1 N NaOAc extraction procedure. Availability of Si fertilizer was different among the tested soils, and about $9.1{\sim}19.2%$ of the applied Si fertilizer was extracted after 60 days laboratory incubation. Application rate could not influence the availability of Si fertilizer. Application of compost with Si fertilizer could not increase Si availability in upland soils, but lime treatment could increase Si availability. Soil pH increased by application of Si fertilizer, but the effect of Si fertilizer on soil pH was minimal. When Si fertilizer is applied on the purpose of Si nutrition in acid upland soils, lime treatment should be coupled with the Si fertilizer for remediation of soil acidity.

이화학적 특성이 다른 4가지의 밭토양에 대한 규산질 비료를 처리하여 토양의 유효규산 함량과 pH 변화에 미치는 효과를 조사하였다. 토양의 이화학적 특성과 기존 유효규산 함량에 상관없이 토양 유효규산 함량은 규산질 비료 시용량에 비례하여 증가하였다. 규산질 비료의 유효화 정도는 토양마다 차이가 있었으며 최저 9.1%에서 최고 19.2% 정도의 비율을 나타냈다. 규산질 비료 100 kg/10a 수준의 처리는 용탈 등으로 제거되지 않는 한 10 cm 질이 표토에 평균적으로 100 mg/kg 정도의 유효규산을 공급할 수 있는 것으로 나타났다. 퇴비 혼합처리는 토양 유효규산 함량 증가에 큰 영향을 미치지 못했으며, 석회 처리는 유효규산 함량을 다소 증가시켰다. 토양 pH 변화는 모든 토양에서 규산질 비료 시비량에 비례하여 증가하였으며, 규산질 비료 100 kg/10a 처리로 토양 pH를 $0.1{\sim}0.2$ 단위 증가시킬 수 있는 것으로 나타났다. 따라서 산성 토양의 경우에는 규산질 비료의 시용과는 별도로 pH 교정을 위해 석회비료를 시용해야 할 것이다.

Keywords

References

  1. Mckeague, J. A. and cline, M G. (1963) Silica in soil solution, (II) The adsorption of monosilicic acid by soil and by other substances, Can. J. SoiI Sci. 43, 83-96 https://doi.org/10.4141/cjss63-011
  2. Lewin, J. and Reimann, B. E. F. (1969) Silicon and plant growth, Annu. Rev. Ptant Physiol. 20, 289-304 https://doi.org/10.1146/annurev.pp.20.060169.001445
  3. Parry, D. W. and Smithson, F. (1964) Types of opaline silica deposidon in the leaves of Brithish grasses, Ann. Bot. 28, 169-185
  4. Kang, Y. S. (1991) Effects of silicon on stomatal size and frequency in rice plants, Korean J. Crop Sci. 36, 70-73
  5. Kang, Y. S., Lee, J. H., Kim, J. I. and Lee, J. S. (1997) Influence of silicate application on rice grain quality, Korean J. Crop Sci. 42, 800-804
  6. Agarie, S. (1998) Effects of silicon on tolerance to water deficit and heat stress in rice plants; Monitored by electrolyte leakage, Plant Prod. Sci. 1, 96-103 https://doi.org/10.1626/pps.1.96
  7. Miyamori, Y. (1996) Role and guideline of silicon nutr-ition in low protein rice production, Jap. J. Environ. Agric. 5, 61-66
  8. Idris, M, Hossain, M. M and Choudhury, F. A. (1975) The effect of silicon on lodging of rice m presence of added nitrogen, Ptant Soit 43, 691-695
  9. Deren, C W./ Datnoff, L E., Snyder, G. H. and Martin, F. G. (1994) Silicon concentration, disease response, and yield components of rice genotypes grown on flooded organic Histosols, Crop Sci. 34, 733-737 https://doi.org/10.2135/cropsci1994.0011183X003400030024x
  10. Ito, K. and Chiba, K. (1994) Relationship between silicate fertility of soil and irrigation water and the occu-rrence of lice blast disease, Tohoku Agric. Res. 47, 7-8
  11. Saigusa, M-, Yamamoto, A. and Shibuya, K. (2000) Agri-cultural use of porous hydrated calcium silicate, Ptant Prod. Sci. 3, 51-54 https://doi.org/10.1626/pps.3.51
  12. Volk, R J., Kahn, R P. and Weintraub, R L. (1958) Silicon content of the rice plant as a factor influendng its resistance to infection by the blast fungus, Piricularia oryzae, PhytopathoL 48, 179-184
  13. Sherwood, R T. and Vance, C P. (1980) Resistance to fungal penetration in Gramineae, Phytopathol. 70, 273-279 https://doi.org/10.1094/Phyto-70-273
  14. Park, N. J., Park, Y. S., Lee, K. H. and Kim, Y. S. (1972) The effect of lime and wollastonite on an acid sulfate soil, J. Korean Soc. Soil Sci. Fert. 5, 25-32
  15. Bodurtha, P. and Brassard, P. (2000) Neutralization of acid by steel-making slags, Environ. Techrnol. 21, 1271-1281 https://doi.org/10.1080/09593332108618151
  16. Oh, W. K. (1986) Effect of combined application of lime and organic matter, and of calcium silicate on the gro-wth and cadmium content of chinese cabbage, Korean J. Environ. Agric. 5, 61-66
  17. Oh, W. K., Kim, J. Y. and Kim, S. B. (1987) Effects of urea, ammonium nitrate and calcium silicate on the abs-orption, translocation of potassium and yield of chinese cabbage, J. Korean Soc. Soit Sci. Fert. 20, 337-340
  18. Rim, Y. C, Kim, K. Y., Park, K. W., Yun, H. K., Seo, T. C, Lee, J. W. and Lee, S. G. (2002) Effect of granular silicate application on the growth and yield of tomato grown in perlite substrate, /. Korean Soc. Hort. Sci. 43, 21-24
  19. Lee, J. S., Park, J. H; and Han, K. S. (2000) Effects of potassium silicate on growth, photosynthesis, and inor-ganic ion absorption in cucumber hydroponics/ /. Korean Soc. tIort. Sci. 41, 480484
  20. Cho, I. C, Lee, S. H. and Cha, B. J. (1998) effects of soluble silicon and several surfactants on the develop-ment of powdery mildew of cucumber, Karean J. Envi-ron. Agric. 17, 306-311
  21. Lee J. S. and Yiem, M. S. (2000) Effects of soluble silicon on development of powdery mildew (Sphaerotheca futi-ginea) in cucumber plants, Korean J. Pestic. Sci. 4, 37-43.
  22. DiK, A J., Verhaar, M. A. and Belangpr, R R (1998) Compahson of three biological control agents against cucumber powdery midldew (Sphaerotheca fuliginea) in seirn commerdal scale glasshouse trials, Eur. J. Plcmt Pathot. 104, 413-423 https://doi.org/10.1023/A:1008025416672
  23. Nelson, D. W. and Sommers, L E. (1982) Total carbon, organic carbon, and orgarnic matter, p. 539-579. In A. L Page et al. (ed.), Methods of soU analysis, Part 2: Chemical and microbiological properties, Soil Science Society of Amehca, Madison, WI, USA
  24. Olsen, S. R and Sommers, L. E. (1982) Phosphoms, p. 403-430. In A. L. Page et al. (ed.) Methods of soil analysis, Part 2: Chemical and microbiological properties, Soil Sdence Sodety of America, Madison, WI, USA
  25. Hallmark, C. T., Wilding, L P. and Smsck, N. E. (1982) Silicon, p. 263-273. In A. L. Page et al. (ed.) Methods of soil analysis, Part 2: Chemical and microbiological properties, Soil Science Society of America, Madison, WI, USA
  26. Millei, W. P. and Millei, D. M (1987) A micro-pipette method for soil mechianical analysis, Commun. SoiI Sci. Ptant Anal. 18, 1-15
  27. Kim, J. K. (1982) A study on the dissolution rate fo the siliceous materials from Korea, MS Thesis, Korea University, Seoul, Korea
  28. Baek, N. I. (1983) The interaction between silicate and phosphate fertilizers applied in the paddy soils, MS Thesis, Seoul National University, Suwon, Korea
  29. Kim, C B., Park, N. K., Lee, S. H., Park, S. D. and Choi, B. S. (1994) Changes in barley yield and some physico-chemical properties of upland soil by long-term application of silicate fertilizer and compost, J. Korean Soc. Soit Sci. Fert. 77, 195-200
  30. Mott, C J. B. (1981) Anion and ligand exchange, p. 179-220. In D. J. Greenland and M. H. Haynes (ed.) The chemistry of soil processes, Wiley, New York, NY, USA
  31. Hignston, F. J. and Raupach, M (1967) The reaction between monosilicic acid and alunimum hydroxide. I. Kinetics of adsorption of silicic acid by aluminum hydr-oxide, Aust. ]. Soil Res. 5, 295-309 https://doi.org/10.1071/SR9670295
  32. Park, C S. (1970) Studies on the relation between available silica content and effect of silicate distributionpattem of available silica content and requirement in Korean paddy top soil, Res. Rept. RDA. (Plant & Environment) 13, 1-30

Cited by

  1. Effect of Growth and Nitrogen Use Efficiency by Application of Mixed Silicate and Nitrogen Fertilizer on Zoysiagrass Cultivation vol.3, pp.2, 2014, https://doi.org/10.5660/WTS.2014.3.2.137
  2. Effects of Granular Silicate on Watermelon (Citrullus lanatus var. lanatus) Growth, Yield, and Characteristics of Soil Under Greenhouse vol.48, pp.5, 2015, https://doi.org/10.7745/KJSSF.2015.48.5.456
  3. Influences of Silicate Fertilizer Application on Soil Properties and Red Pepper Productivity in Plastic Film House vol.33, pp.4, 2014, https://doi.org/10.5338/KJEA.2014.33.4.254
  4. Assessment of Silicate Fetilizers Application Affecting Soil Properties in Paddy Field vol.44, pp.6, 2011, https://doi.org/10.7745/KJSSF.2011.44.6.1016