Gossypin Protects Primary Cultured Rat Cortical Cells from Oxidative Stress- and $\beta$-Amyloid-Induced Toxicity

  • Yoon, Injae (Department of Psychiatry and Department of Pharmacology, College of Medicine, Dongguk University) ;
  • Lee, Kwang-Heun (Department of Psychiatry and Department of Pharmacology, College of Medicine, Dongguk University) ;
  • Choi, Jungsook (Department of Psychiatry and Department of Pharmacology, College of Medicine, Dongguk University)
  • Published : 2004.04.01

Abstract

The present study investigated the effects of gossypin, 3,3',4',5,7,8-hexahydroxyflavone 8-glucoside, on the toxicity induced by oxidative stress or $\beta$-amyloid ($A_{\beta}$) in primary cultured rat cortical cells. The antioxidant properties of gossypin were also evaluated by cell-free assays. Gossypin was found to inhibit the oxidative neuronal damage induced by xanthinelxanthine oxidase or by a glutathione depleting agent, D,L-buthionine (S,R)-sulfoximine. In addition, gossypin significantly attenuated the neurotoxicity induced by $A_{{\beta}(25-35)}$. Furthermore, gossypin dramatically inhibited lipid peroxidation initiated by $Fe^{2+}$ and ascorbic acid in rat brain homogenates. It also exhibited potent radical scavenging activity generated from 1 ,1-diphenyl-2-picrylhydrazyl. These results indicate that gossypin exerts neuroprotective effects in the cultured cortical cells by inhibiting oxidative stress- and $A_{\beta}$-induced toxicity, and that the antioxidant properties of gossypin may contribute to its neuroprotective actions.

Keywords

References

  1. Bains, J. S. and Shaw, C. A., Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death.Brain Res. Rev., 25, 335-358 (1997) https://doi.org/10.1016/S0165-0173(97)00045-3
  2. Behl, C., Davis, J. B., Lesley, R., and Schubert, D., Hydrogen peroxide mediates amyloid-beta protein toxicity. Cell, 77, 817-827(1994) https://doi.org/10.1016/0092-8674(94)90131-7
  3. Behl, C. and Moosmann, B., Causes and consequences of oxidative stress in Alzheimer's disease. Free Rad. Biol. Med., 33,182-191 (2002) https://doi.org/10.1016/S0891-5849(02)00883-3
  4. Cho, J., Joo, N. E., Kong, J.-Y., Jeong, D.-Y., Lee, K. D., and Kang, B.-S., Inhibition of excitotoxic neuronal death by methanol extract of Acori graminei rhizoma in cultured rat cortical neurons. J. Ethnopharmacol., 73, 31-37(2000) https://doi.org/10.1016/S0378-8741(00)00262-2
  5. Cho, J., Kong, J.-Y., Jeong, D.-Y., Lee, K. D., Lee, D. U., and Kang, B.-S., NMDA receptor-mediated neuroprotection by essential oils from rhizomes of Acorus gramineus. Life Sci., 68,1567-1573 (2001) https://doi.org/10.1016/S0024-3205(01)00944-4
  6. Cho, J., Kim, Y. H., Kong, J.-Y., Yang, C.-H., and Park, C.-G., Protection of cultured rat cortical neurons from excitotoxicity by asarone, a major essential oil component in the rhizomes of Acorus gramineus. Life Sci., 71,591-599 (2002) https://doi.org/10.1016/S0024-3205(02)01729-0
  7. Cho, J. and Lee, H.-K., Wogonin inhibits excitotoxic and oxidative neuronal damage in primary cultured rat cortical . cells. Eur. J. Pharmacol., 485,105-110 (2004) https://doi.org/10.1016/j.ejphar.2003.11.064
  8. Dok-Go, H., Lee, K. H., Kim, H. J., Lee, E. H., Lee, J., Song, Y. S., Lee, Y. H., Jin, C., Lee, Y. S., and Cho, J., Neuroprotective effects of antioxidativeflavonoids,quercetin, (+)-dihydroquercetin and quercetin 3-methyl ether, isolated from Opuntia ficusindica var. saboten. Brain Res., 965, 130-136 (2003) https://doi.org/10.1016/S0006-8993(02)04150-1
  9. Dyrks, T., Dyrks, E., Harmann, R., Masters, C., and Beyreuther, K., Amyloidogenecity of $\beta$A4 and $\beta$A4-bearing amyloid protein precursor fragments by metal-catalyzed oxidation. J Biol. Chem., 267,18210-18217 (1992)
  10. Ferrandiz, M. L. and Alcaraz, M. J., Anti-inflammatory activity and inhibition of arachidonic acid metabolism by flavonoids. Agents Actions, 32, 283-288 (1991)
  11. Formica, J. V. and Regelson, W., Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol., 33,1061-1080 (1995) https://doi.org/10.1016/0278-6915(95)00077-1
  12. Griffith, O. W. and Meister, A., Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol. Chem., 254, 7558-7560 (1979)
  13. Halliwell, B., Reactive oxygen species and the central nervous system. J. Neurochem., 59, 1609-1623 (1992) https://doi.org/10.1111/j.1471-4159.1992.tb10990.x
  14. Harkany, T., Hortobaqyi, T., Sasvari, M., K6nya, C., Penke, B., Luiten, P. G. M., and Nyakas, C., Neuroprotective approaches in experimental models of $\beta$-amyloid neurotoxicity: relevance to Alzheimer's disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 23, 963-1008 (1999) https://doi.org/10.1016/S0278-5846(99)00058-5
  15. Harris, M. E., Hensley, K., Butterfield, D. A., Leedle, A., and Caney, J. M., Direct evidence of oxidative injury produced by the Alzheimer's beta-amyloid peptide (1-40) in cultured hippocampal neurons. Exp. Neurol., 131,193-202 (1995) https://doi.org/10.1016/0014-4886(95)90041-1
  16. Hensley, K., Carney, J. M., Mattson, M. P., Aksenova, M., Harris, M., Wu, J. F., Floyd, R. A., and Butterfield, D. A., A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc. Natl. Acad. Sci. USA, 91, 3270-3274 (1994) https://doi.org/10.1073/pnas.91.8.3270
  17. Ishige, K., Schubert, D., and Sagara, Y., Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Rad. Biol. Med., 30,433-446 (2001) https://doi.org/10.1016/S0891-5849(00)00498-6
  18. Johnson, M. K. and Loo, G., Effects of epigallocatechin gallate and quercetin on oxidative damage to cellular DNA. Mutat. Res., 459, 211-218 (2000) https://doi.org/10.1016/S0921-8777(99)00074-9
  19. Jung, Y.-S., Kang, T-S., Yoon, J.-H., Joe, B.-Y., Lim, H.-J., Seong, C.-M., Park, W.K., Kong, J. Y., Cho, J., and Park, N. S., Synthesis and evaluation of 4-hydroxyphenylacetic acid amides and 4-hydroxycinnamamides as antioxidants. Bioorg. Med. Chem. Lett., 12,2599-2602 (2002) https://doi.org/10.1016/S0960-894X(02)00479-1
  20. Li, Y., Maher, P., and Schubert, D., A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron, 19,453-463 (1997) https://doi.org/10.1016/S0896-6273(00)80953-8
  21. Muller, W. E., Romero, F. J., Perovic, S., Pergande, G., and Pialoglou, P., Protection of flupirtine on beta-amyloid-induced apoptosis in neuronal cells in vitro: prevention of amyloidinduced glutathione depletion. J. Neurochem., 68, 2371-2377 (1997) https://doi.org/10.1046/j.1471-4159.1997.68062371.x
  22. Reiter, R. J., Oxidative processes and antioxidative defense mechanism in the aging brain. FASEB J., 9, 526-533 (1995) https://doi.org/10.1096/fasebj.9.7.7737461
  23. Simonian, N. A. and Coyle, J. T., Oxidative stress in neurodegenerative diseases. Ann. Rev. Pharmacol. Toxicol., 36, 83-106 (1996) https://doi.org/10.1146/annurev.pa.36.040196.000503
  24. Smith, M. A., Perry, G., Richey, P. L., Sayre, L. M., Anderson, V. E., Beal, M. F., and Kowall, N., Oxidative damage in Alzheimer's disease. Nature, 382, 120-121 (1996)
  25. Viswanathan, S., Sambantham, P. T., Reddy,K., and Kameswaran, L., Gossypin-induced analgesia in mice. Eur. J. Pharmacol., 98,289-291 (1984) https://doi.org/10.1016/0014-2999(84)90604-6
  26. Viswanathan, S., Thirugnanasambantham, P., Ramaswamy, S., and Bapna, J. S., A study on the role of cholinergic and gamma amino butyric acid systems in the anti-nociceptive effect of gossypin. Clin. Exp. Pharmacal. Physiol., 20, 193-196 (1993) https://doi.org/10.1111/j.1440-1681.1993.tb01668.x
  27. Zhang, L., Zhao, B., Yew, D. T., Kusiak, J. W., and Roth, G. S., Processing of Alzheimer's amyloid precursor protein during $H_{2}O_{2}$-induced apoptosis in human neuronal cells. Biachem. Biophys. Res. Commun., 235, 845-848 (1997) https://doi.org/10.1006/bbrc.1997.6698