Surface Micelle Formation of Polystyrene-b-Poly(2-vinyl pyridine) Diblock Copolymer at Air-Water Interface

  • Park, Myunghoon (Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology) ;
  • Bonghoon Chung (Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology) ;
  • Byungok Chun (Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology) ;
  • Taihyun Chang (Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology)
  • Published : 2004.02.01

Abstract

We have studied the surface micelle formation of polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) at the air-water interface. A series of four PS-b-P2VPs were synthesized by anionic polymerization, keeping the PS block length constant (28 kg/㏖) and varying the P2VP block length (1, 11, 28, or 59 kg/㏖). The surface pressure-area ($\pi$-A) isotherms were measured and the surface morphology was studied by atomic force microscopy (AFM) after Langmuir-Blodgett film deposition onto silicon wafers. At low surface pressure, the hydrophobic PS blocks aggregate to form pancake-like micelle cores and the hydrophilic P2VP block chains spread on the water surface to form a corona-like monolayer. The surface area occupied by a block copolymer is proportional to the molecular weight of the P2VP block and identical to the surface area occupied by a homo-P2VP. It indicates that the entire surface is covered by the P2VP monolayer and the PS micelle cores lie on the P2VP monolayer. As the surface pressure is increased, the $\pi$-A isotherm shows a transition region where the surface pressure does not change much with the film compression. In this transition region, which displays high compressibility, the P2VP blocks restructure from the monolayer and spread at the air-water interface. After the transition, the Langmuir film becomes much less compressible. In this high-surface-pressure regime, the PS cores cover practically the entire surface area, as observed by AFM and the limiting area of the film. All the diblock copolymers formed circular micelles, except for the block copolymer having a very short P2VP block (1 kg/㏖), which formed large, non-uniform PS aggregates. By mixing with the block copolymer having a longer P2VP block (11 kg/㏖), we observed rod-shaped micelles, which indicates that the morphology of the surfaces micelles can be controlled by adjusting the average composition of block copolymers.

Keywords

References

  1. J. Am. Chem. Soc. v.113 J.Zhu;A.Eisenberg;R.B.Lennox https://doi.org/10.1021/ja00015a011
  2. J. Phys. Chem. v.96 J.Zhu;R.B.Lennox;A.Eisenberg https://doi.org/10.1021/j100191a002
  3. Macromolecules v.25 J.Zhu;A.Eisenberg;R.B.Lennox https://doi.org/10.1021/ma00050a025
  4. Macromolecules v.25 J.Zhu;A.Eisenberg;R.B.Lennox https://doi.org/10.1021/ma00050a026
  5. J. Chem. Phys. v.98 B.Lin;S.A.Rice https://doi.org/10.1063/1.464796
  6. Langmuir v.12 A.M.Goncalves de Silva;E.J.M.Filipe;J.M.R.d'Oliveira;J.M.G.Martinho https://doi.org/10.1021/la960604+
  7. Langmuir v.14 T.R.Baekmark;I.Sprenger;M.Ruile;O.Nuyken;R.Merkel https://doi.org/10.1021/la970601c
  8. Langmuir v.14 A.M.Goncalves de Silva;A.L.S.Gamboa;J.M.G.Martinho https://doi.org/10.1021/la980101z
  9. Macromolecules v.34 T.Seo;J.H.Im;J.S.Lee;J.H.Kim https://doi.org/10.1021/ma002119y
  10. Macromolecules v.34 Y.Seo;K.Paeng;S.Park https://doi.org/10.1021/ma010529w
  11. Macromolecules v.33 S.M.Baker;K.A.Leach;C.E.Devereaux;D.E.Gragson https://doi.org/10.1021/ma992029x
  12. Thin Solid Films v.354 S.Li;C.J.Clarke;A.Eisenberg;R.B.Lennox https://doi.org/10.1016/S0040-6090(99)00570-2
  13. Langmuir v.15 J.K.Cox;K.Yu;B.Constantine;A.Eisenberg;R.B.Lennox https://doi.org/10.1021/la9901940
  14. Macromol. Res. v.11 C.S.Cho;I.K.Park;J.W.Nah;T.Akaike https://doi.org/10.1007/BF03218270
  15. Langmuir v.17 K.Shin;M.H.Rafailovich;J.Sokolov;D.M.Chang;J.K.Cox;R.B.Lennox;A.Eisenberg;A.Gibaud;J.Huang;S.L.Hsu;S.K.Satija https://doi.org/10.1021/la010110z
  16. Colloids Surf. A v.133 S.Li;C.J.Clarke;R.B.Lennox;A.Eisenberg https://doi.org/10.1016/S0927-7757(97)00197-0
  17. J. Am. Chem. Soc. v.118 J.Kumaki;Y.Nishikawa;T.Hashimoto https://doi.org/10.1021/ja9538593
  18. Phys. Chem. Chem. Phys. v.1 J.K.Cox;K.Yu;A.Eisenberg;R.B.Lennox https://doi.org/10.1039/a905008f
  19. Macromolecules v.35 C.A.Devereaux;S.M.Baker https://doi.org/10.1021/ma011319m
  20. Macromolecules v.29 T.J.Martin;K.Prochazka;P.Munk;S.E.Webber https://doi.org/10.1021/ma960629f
  21. J. Am. Chem. Soc. v.121 H.Shen;L.Zhang;A.Eisenberg https://doi.org/10.1021/ja983712m
  22. Appl. Phys. A v.72 G.Lengl;A.Pletti;P.Ziemann;J.P.Spatz;M.Moller https://doi.org/10.1007/s003390100762
  23. J. Am. Chem. Soc. v.123 B.H.Sohn;S.I.Yoo;B.W.Seo;S.H.Yun;S.M.Park https://doi.org/10.1021/ja0170549
  24. Korea Polym. J. v.7 K.Kwon;W.Lee;D.Cho;T.Chang
  25. Macromolecules v.34 W.Lee;D.Cho;T.Chang;K.J.Hanley;T.P.Lodge https://doi.org/10.1021/ma001727a
  26. Macromolecules v.21 J.Kumaki https://doi.org/10.1021/ma00181a033