An Evaluation of the Environmental Effects of Marine Cage Fish Farms: I. Estimation of Impact Region and Organic Carbon Cycling in Sediment Using Sediment Oxygen Consumption Rates and Macrozoobenthos

해상 어류가두리양식장의 환경영향평가: I. 퇴적물 산소소모율 및 저서동물을 이용한 유기물 오염영향권 추정 및 유기탄소 순환

  • 이재성 (국립수산과학원 남해수산연구소 자원환경팀) ;
  • 정래홍 (국립수산과학원 남해수산연구소 자원환경팀) ;
  • 김기현 (충남대학교 해양학과) ;
  • 권정노 (국립수산과학원 양식환경연구소) ;
  • 이원찬 (국립수산과학원 환경관리팀) ;
  • 이필용 (국립수산과학원 남해수산연구소 자원환경팀) ;
  • 구준호 (국립수산과학원 환경관리팀) ;
  • 최우정 (국립수산과학원 환경관리팀)
  • Published : 2004.02.01

Abstract

In order to understand the environmental impact of marine cage fish farms, we measured the vertical fluxes of particulate to the sediment, the distribution of organic carbon in core samples, sediment oxygen consumption rate (SOD), and macrobenthos with increasing distance from a fish cage in Miruk island located in Tongyong. The experiment was performed in August 2003. Measured values gradually decreased with distance, indicating that the organic matter in the sediment derived from the fish farm. The dominant macrobenthos species were Tharyx mulifilis, Lumbrineris longifolia, Sigambra tentaculata, and Capitella capitata, occupying 88% of the total population. Capirella capirata, an opportunistic polychaete species, were especially abundant between 0 to 5 m radius range. The estimated impact regions of organic matter enrichment based on sediment consilmption rates and compositions of macrobenthos were in good agreement. Most organic matter derived from the fish farm was deposited within a 10 m radius and then dispersed horizontally to nearby (at least 50 m) surface sediment. The vertical organic carbon fluxes to the sediment at the fish farm were higher by a factor of two than those outside the area. The remineralization organic carbon in the upper sediment layer was estimated to be 50% (1.07 g C m$^{-2}$ day$^{-1}$ ) at the fish farm. In contrast, outside the area, 30% (0.30 g C m$^{-2}$ day$^{-1}$ ) of organic carbon was recycled and the remaining 70% was deposited to the deep sediment layer.

해상 어류가두리 양식장이 주변 환경에 미치는 영향을 파악하기 위해 2003년 8월에 경남 통영시 미륵도에 설치된 해상 어류가두리양식장에서 거리를 증가시키면서 퇴적물로 유입되는 입자물질의 침강 플럭스, 퇴적물 내 유기탄소의 수직분포, 퇴적물의 산소소모율, 저서동물의 군집을 분석하였다. 입자 유기물 침강 플럭스, 표층 퇴적물의 유기탄소 농도 및 퇴적물의 산소소모율은 가두리에서 멀어질수록 점차 감소하는 양상을 보여 가두리양식장에서 유출된 유기물이 주변으로 확산되는 것을 나타냈다. 저서동물 중 다모류인 Tharyx multifilis, Lumbrineris longifolia, Siganlbra tentaculata, Capitella capitata가 전체 군집에 88%를 차지하여 우점하였으며, 특히 오염지표종인 Capitella cupitata는 반경 5 m이내에서만 출현하였다. 퇴적물의 산소소모율 및 저서동물의 군집을 이용하여 추정한 유기물의 오염 영향권이 잘 일치하여 가두리양식장을 중심으로 반경 10 m내외에 유기물이 집중적으로 퇴적되고 있으며 최소한 50 m까지 영향을 주는 것으로 파악되었다. 가두리양식장에서 퇴적물로 유입되는 유기탄소 플럭스는 2.14 g C m$^{-2}$ day$^{-1}$으로 가두리양식장에서 50 m떨어진 지점에 비해 약 2배 정도 큰 수치였다. 또한 유입된 유기물 중 약 50%(1.07 g C m$^{-2}$ day$^{-1}$)가 상부층에서 분해되었다. 반면 50 m 저점에서는 유입된 유기탄소 중 30%(0.30 g C m$^{-2}$ day$^{-1}$)가 재순환되며 나머지 70%는 퇴적되는 것으로 나타났다.

Keywords

References

  1. 바다 v.2 남해안 통영지역 가두리 양식장 해수-퇴적물 경계면에서의 chemical fluxes 심정희;강영철;최진우
  2. 한국해양학회지 v.27 no.1 영일만 다모류 군집의 계절별, 공간적 변화 신현출;최성순;고철환
  3. 바다 v.8 no.4 산소미세전극을 이용한 남해연안 퇴적물/해수 계면에서 산소소모율 및 유기탄소 산화율 추정 이재성;김기현;유준;정래홍;고태승
  4. 한국수산학회지 v.34 no.3 남해안 소리도 주변 연성저질 해역의 저서동물 분포 임현식;최진우
  5. 한국수산학회지 v.25 no.2 진해만 양식장 밀집해역의 저서동물 분포 임현식;최진우;제종길;이재학
  6. 한국해양학회지 v.29 남해 대륙붕 표층퇴적물 중 중금속 원소의 분포 특성 조영길;이창복;최만식
  7. 바다 v.7 남해안 가두리 양식장 밀집해역의 대형저서동물 군집에 대한 연구 정래홍;임현식;김성수;박종수;전경암;이영식;이재성;김귀영;고우진
  8. 자연보존 v.88 인천 북항 주변해역의 해양저서동물상 홍재상;서인수;유재원;정래흥
  9. 한국수산학회지 v.30 no.3 시화방조제의 건설은 저서동물군집의 시·공간 분포에 어떠한 영향을 미쳤는가? 홍재상;정래흥;서인수;윤건탁;최병미;유재원
  10. 한국수산학회지 v.33 no.1 통영 인근 가두리 양식장 지역의 저서동물군집구조 박흥식;최진우;이형곤
  11. Global Biogeochemical Cycles v.8 Redfield ratios of remineralization of determined by nutrient data analysis Anderson,L.A.;J.L.Sarmiento https://doi.org/10.1029/93GB03318
  12. Mar. Pollut. Bull. v.1 Pollution by sewage in Marseilles Bellan,C. https://doi.org/10.1016/0025-326X(70)90124-4
  13. Early diagenesis: A Theoretical Approach Berner,R.A.
  14. Tellus v.72 Gas exchange rates between air and sea Brown,J.R.;Gowen,R.J.;McLusky,D.S.
  15. J. Exp. v.56 The effect of salmon farming on the benthos of a Scottish sea loch Brown,J.R.;Gowen,R.J.;McLusky,D.S.
  16. J. Ecol. v.56 Models describing the diffusion of oxygen and other mobile constituents across mud-water interface Bouldin,D.R. https://doi.org/10.2307/2258068
  17. Mar. Chem. v.52 Oxygen penetration depths and fluxes in marine sediments Cai,W.J.;F.L.Sayles https://doi.org/10.1016/0304-4203(95)00081-X
  18. Aquaculture v.226 Organic enrichment of sediments from salmon farming in Norway: environmental factors, management practices, and monitoring techniques Carroll,M.L.;S.Cochran;R.Fieler;R.Velvin;P.White https://doi.org/10.1016/S0044-8486(03)00475-7
  19. Aquat. Microb. Ecol. v.21 Sediment mineralization, nutrient fluxes, denitrification and dissimilatory nitrate reduction to ammonium in an estuarine fjord with cage trout farms Christensen,P.B.;S.Rysgaard;N.P.Sloth;T.Dalsgaard;S.Schwaerter https://doi.org/10.3354/ame021073
  20. The environmental management of enclosed seas (EMECS) report EMECS
  21. Con. Shelf Res. v.17 Oxygen Budgets calculated from in situ oxygen microprofiles for Northern Adriatic sediments Epping,E.H.G.;W.Helder https://doi.org/10.1016/S0278-4343(97)00039-3
  22. Aquaculture production, 1984-1990. Fisheries Circular NO.815 FAO
  23. Deep-Sea Res. Diffusive and total oygen uptake of deepsea sediments in the eastern south-atlantic ocean-in-situ and laboratory measurement Glud,R.N.;J.K.Gundersen;B.B.JΦ rgensen;N.P.Revsbech;H.D.Schultz
  24. Limnol. Oceanogr. v.48 no.3 Seasonal dynamics of benthic O₂uptake in a semienclosed bay: Importance of diffusion and faunal activity Glud,R.N.;J.K.Gundersen;H.Roy;B.B.Jorgensen https://doi.org/10.4319/lo.2003.48.3.1265
  25. Mar. Ecol. Prog. Ser. v.61 Chemical fluxes and mass balances in a marine fish cage farm I: Carbon Hall,P.O.G.;L.G.Anderson;O.Holby;S.Kollberg;M.Samuelsson https://doi.org/10.3354/meps061061
  26. J. Korean Soc. Oceanogr. v.32 The partitioning of organic carbon cycle in coastal sediments of Kwangyang Bay Han,M.W.;I.H.Lee;K.H.Kim;I.Noh
  27. Mar. Ecol. Prog. Ser. v.96 Seasonal changes in benthic fluxes of dissolved-oxygen and ammonium associated with marine culture Atlantic salmon Hargrave,B.T.;D.E.Duplisea;E.Pfeiffer;D.J.Wildish https://doi.org/10.3354/meps096249
  28. Fish. Res. v.18 Interaction between wild and cultured Atlantic Salmon -a review of the Norwegian experience Heggberget,T.G.;B.O.Johnsen;K.Hinder;B.Jonsson;L.P.Hansen;N.A.Hvidsten;A.J.Jensen https://doi.org/10.1016/0165-7836(93)90044-8
  29. ICES J. Mar. Sci. v.58 Effects of benthic fauna on organic mineralization in fish-farm sediments: importance of size and abundance Heilskov,A.C.;M.Homer https://doi.org/10.1006/jmsc.2000.1026
  30. Bull. Natl. Res. Inst. Aquacult. v.1 Evaluation of water quality by observation of dissolved oxygen content in mariculture farms Hirata,H.;S.Kadowaki;S.Ishida
  31. Aquaculture v.226 Environmental quality criteria for fish farms in Japan Hisashi Yokoyama https://doi.org/10.1016/S0044-8486(03)00466-6
  32. Mar. Ecol. Prog. Ser. v.80 Impact of marine fish cage farming on sediment metabolism and sulfate reduction of underlying sediments Holmer,M.;E.Kristensen https://doi.org/10.3354/meps080191
  33. Mar. Pollut. Bull. v.44 Impacts of milkfish (Chanos chanos) aquaculture on carbon and nutrient fluxes in the Bolinao area, Philippines Holmer,M.;N.Marba;J.Terrados;C.M.Duarte;M.D.Fortes https://doi.org/10.1016/S0025-326X(02)00048-6
  34. Geochimica et Cosmochimica Acta. v.57 Diffusion coefficients of sulfate and methan in marine sediments: Influence of porosity Iversen,N.;B.B.JΦ rgensen https://doi.org/10.1016/0016-7037(93)90368-7
  35. J. Korean Soc. Oceamogr. v.32 Organic carbon, calcium carbonate, and clay mineral distributions in the Korea Strait region, the southern part of the East Sea Khim,B.;D.H.Shin;S.J.Han
  36. Bull. Nakai Reg. Fish. Res. Lab. v.12 The benthic community in polluted coastal water. (III) Osaka Bay Kitamori,R.;K.Funae
  37. Geochimica et Cosmochimica Acta. v.51 Biogeochemical cycling in an organic-rich coastal marine basin. 5. Sedimentary nitrogen and phosphorus budgets based upon kinetic models, mass balances and the stoichiometry of nutrient regeneration Klump,J.V.;C.S.Martens https://doi.org/10.1016/0016-7037(87)90209-2
  38. Marine Geology v.139 Early diagenetic processes in recent sediments of the Gulf of St-Lawrence: phosphorus, carbon and iron burial rates Louchouam,P.;M.Lucotte;E.Duchemin;A. de Vernal https://doi.org/10.1016/S0025-3227(96)00110-7
  39. J. Exp. Mar. Biol. Ecol. v.285-286 Bioturbation, sediment fluxes and benthic community structure around a salmon cage farm in Loch Creran, Scotland Nickell,L.A.;K.D.Black;D.J.Hughes;J.Overnell;T.Brand;T.D.Nickell;E.Breuer;S.M.Harvey https://doi.org/10.1016/S0022-0981(02)00529-4
  40. Nature v.405 Effect of aquaculture on world fish supplies Naylor,R.L.;R.J.Goldburg;J.H.Primavera;N.Kautsky;M.C.M.Beveridge;J.Clay;C.Folke;J.Lubchenco;H.Mooney;M.Troell https://doi.org/10.1038/35016500
  41. Aquaculture v.226 Management of environmental impacts of marine aquaculture in Europe Paul Read;Fernandes,T. https://doi.org/10.1016/S0044-8486(03)00474-5
  42. Fisheries Science v.67 Spacial and temporal variations of sediment quality in an around fish cage farms: A case study of aquaculture in the Seto Inland Sea, Japan Pawar,V.;O.Matsuda;T.Yamamoto;T.Hashimoto;N.Rajendran https://doi.org/10.1046/j.1444-2906.2001.00298.x
  43. Oceanogr. Mar. Biol. Annu. Rev. v.16 Macrobenthic succession in relation to organic enrichment and pollution of the marine environment Pearson,T.H.;R.Rosenberg
  44. Marine Chemistry v.13 The partitioning of organic carbon fluxes and sedimentary organic matter decomposition rates in the ocean Reimers,C.E.;E.Suess https://doi.org/10.1016/0304-4203(83)90022-1
  45. Marine pollution and sea life The use of marine invertebrates as indicators of varying degrees of marine pollution Reish,D.J.;Ruivo,M.(ed.)
  46. The mathernatical theory of communication Shannon,C.E.;W.Weaver
  47. Bull. Jpn. Soc. Fish. oceanogr. v.60 Methods of determining the limit suitable fish culture based on the oxygen consumption rte by the sediment Takeoka,H.;K.Omori
  48. Mar. Pollut. Bull. v.23 Benthic faunal succesion in a cove organically polluted by fish farming Tsutsumi,H.;T.Kikichi;M.Tanaka;T.Higashi;K.Imasaka;M.Miyazaki https://doi.org/10.1016/0025-326X(91)90680-Q
  49. Estuaries v.18 Impact of fish net pen culture on the benthic environment of a cove in south Japan Tsutsumi,H. https://doi.org/10.2307/1352286
  50. Mar. Ecol. Progr. Ser. v.61 Quantitative examination of macrobenthic community changes along an organic enrichment gradient Weston,D. https://doi.org/10.3354/meps061233
  51. World Resources 1998-1999 WRI
  52. Mar. Pollut. Bull. v.31 The Environmental Impact of Marine Fish Culture; Towards a sustainable future Wu,R.S.S. https://doi.org/10.1016/0025-326X(95)00100-2
  53. Fisheries Science v.68 Impact of fish and pearl farming on the benthic environments in Gokasho Bay: Evaluation from seasonal fluctuations of the macrobenthos Yokoyama,H. https://doi.org/10.1046/j.1444-2906.2002.00420.x
  54. J. Appl. Ichthyol. v.17 Genetic interactions between marine finfish species in European aquaculture and wild conspecies Youngson,A.F.;A.Dosdat;M.Saroglia;W.C.Jordan https://doi.org/10.1046/j.1439-0426.2001.00312.x