Chlorophyll Fluorescence and Antioxidative Enzyme Activity of Crinum Leaves Exposed to Natural Environmental Stress in Winter

겨울철 자연환경에 노출된 문주란 잎의 엽록소형광과 항산화효소 활성에 관한 연구

  • 오순자 (제주대학교 생명과학과ㆍ기초과학연구소) ;
  • 고석찬 (제주대학교 생명과학과ㆍ기초과학연구소)
  • Published : 2004.03.01

Abstract

Chlorophyll fluorescence and antioxidative enzyme activity were investigated from leaves of Crinum asiaticum var. japonicum under the natural condition in winter, in order to monitor plant response and physiological states such as vitality, productivity and so on. In the O-J-I-P transients, the fluorescence intensity of J, I, P-step decreased remarkably depending on temperature drop in winter. The photochemical efficiencies of PSII, Fv/Fm, were significantly low in late winter with decrease of Fm. These results indicate that Crinum plants were affected by seasonal drop of temperature. The catalase activity significantly decreased depending on temperature drop in winter. However, the activity of superoxide dismutase ascorbate peroxidase and peroxidase slightly increased in winter while some isoenzymes appeared in winter. These results, with the remarkable decrease of Ev/Fm in winter, represent that Crinum plants were exposed to oxidative stress and subsequently damaged leading to cell death.

겨울철 저온에 의한 식물의 반응 및 생리적 상태를 확인하기 위해 문주란(Crinum asiaticum var. japonicum)을 대상으로 엽록소형광과 항산화효소 찬성의 변화를 조사하였다. O-J-I-P곡선을 분석한 결과 겨울철에 J, I, P-단계에서의 형광세기가 현저하게 간소하였다. 문주란 잎의 광계II의 광화학적 효율, 즉 Fv/Fm은 겨울철의 온도변화 추이와 유사하게 낮은 값을 나타내어 겨울철 저온이 스트레스 요인으로. 작용하는 것으로 보인다. 그리고, 겨울철에 superoxide dismutase, ascorbate peroxidase, peroxidase 활성 이 다소 증가하였으나 catalase 활성은 여름철에 비하여 크게 낮았다. 이러한 결과는 겨울철의 Fv/Fm의 감소와 함께 문주란이 겨울철 저온에 의해 산화적 스트레스에 처해 있게되며 세포사멸이 일어나는 것으로 해석된다.

Keywords

References

  1. 환경생물 v.17 no.2 두릅나무과 식물의 SOD활성고 광계 Ⅱ의 광화학적 효율에 미치는 온도스트레스와 paraquat의 영향 오순자;고정군;김응식;오문유;고석찬
  2. 환경생물 v.19 no.1 한라산 구상나무잎의 엽록소형광의 일변화와 계절적 변화 오순자;고정군;김응식;오문유;고석찬
  3. Trends Plant Sci. v.6 no.1 Impacts of chilling temperatures on photosynthesis in warm-climate plants Allen,D.J.;D.R.Ort https://doi.org/10.1016/S1360-1385(00)01808-2
  4. Antioxidants in higher plants Alscher,R.G.;J.L.Hess
  5. Annu. Rev. Plant Physiol. Plant Mol. Biol. v.50 The water-water cycle in chloroplast: Scavenging of active oxygen an dissipation of excess photons Asada,K. https://doi.org/10.1146/annurev.arplant.50.1.601
  6. Anal. Biochem. v.44 Superoide dismutase: Improved assays and an assay applicable to acrylamide gels Beauchamp,C.;I.Fridovich https://doi.org/10.1016/0003-2697(71)90370-8
  7. Funct. Ecol. v.3 no.4 Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a reviw of current instrumentation Bolhar-Nordenkampf H.R.;S.P.Long;N.R.Baker;G.Oquist;U.Schreiber;E.G.Lechner https://doi.org/10.2307/2389624
  8. Planta v.171 Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O₂ evolution in leaves of higher plants Demmig,B.;O.Bjorkman https://doi.org/10.1007/BF00391092
  9. Plant Physiol v.100 Photoinactivation of catalase occurs under both high-and low-temperature stress conditions and accompanies photo-inhibition of photosystem Ⅱ Feierabend,J.;C.Schaan;B.Hertwig https://doi.org/10.1104/pp.100.3.1554
  10. J. Agric. Sci. Camb. v.122 no.2 Photochemical quenching of chlorophyll fluorescence and drought tolerance in different durum wheat(Triticum durum) cultivars Flagella,Z.;D.Pastore;R.G.Campanile;N.Di Fonzo https://doi.org/10.1017/S0021859600087359
  11. Active oxygen/oxidative stress and plant metabolism The role of ascorbate in plant, interactions with photosynthesis and regulatory significance Foyer,C.H.;M.Lelandais;E.A.Edwards;P.M.Mullineaux;Pell,E.J.(ed.);K.L.Steffen(ed.)
  12. J. Exp. Bot. v.48 Antioxidant enzymes responses to chilling stress in differentially sensitive inbred maize lines Hodges,D.M.;C.J.Adrews;D.A.Johnson;R.I.Hamilton https://doi.org/10.1093/jxb/48.5.1105
  13. Physiol. Plant. v.98 Sensing environmental temperature change through imbalances between energy supply and energy consumption: Redox state of PSⅡ Huner,N.P.A.;D.P.Maxwell;G.R.Gray;L.V.Savitch;M.Krol;A.G.Ivanov;S.Falk https://doi.org/10.1034/j.1399-3054.1996.980218.x
  14. Curr. Opin. Biotechnol. v.6 Oxidative stress in plants Inze,D.;M. Van Montagu https://doi.org/10.1016/0958-1669(95)80024-7
  15. Nature v.277 Cleavage of structural proteins during the assembley of the head of bacteriophage T₄ Laemmli,U.K.
  16. Plant Sci. v.159 Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays Lee,D.H.;C.B.Lee https://doi.org/10.1016/S0168-9452(00)00326-5
  17. Photosynthesis v.29 Oxygen metabolism in higher plant chloroplasts Lidon,F.C.;F.S.Henniques
  18. Oecologia v.97 Photoinhibition and recovery in tropical plant species: Response to disturbance Lovelock,C.E.;M.Jebb;C.B.Osmond https://doi.org/10.1007/BF00317318
  19. Anal. Biochem. v.212 Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate dependent reduction of nitroblue tetrazolium Mittler,R.;B.A.Zinlinskas https://doi.org/10.1006/abio.1993.1366
  20. Photoinhibition of photosynthesis: From molecular mechanism to the field What is photoinhibition? Some insights from comparisons of shade sun plants Osmond,C.B.;Baker,N.R.(ed.);J.R.Bowyer(ed.)
  21. Plant Physiol. Biochem. v.40 Differential temperature dependencies of antioxidative enzyme in two contrasting species: Fagus sylvatica and Coleus blumei Peltzer,D.;E.Dreyer;A.Polle https://doi.org/10.1016/S0981-9428(01)01352-3
  22. Plant Physiol. v.110 Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana Rao,M.V.;G.Paliyath;D.P.Ormrod https://doi.org/10.1104/pp.110.1.125
  23. J. Photochem. Photobiol. B.:Biol. v.48 The different roles of chilling temperatrues in the photoinhibition of photosystem Ⅰ and photosystem Ⅱ Sonoike,K. https://doi.org/10.1016/S1011-1344(99)00030-5
  24. Biochem. Biophys. Acta v.1320 Regulation of antenna structure and electron transport in PSⅡ of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll α fluorescence transient: OKJIP Srivastava,A.;B.Guisse;H.Greppin;R.J.Strasser https://doi.org/10.1016/S0005-2728(97)00017-0
  25. American Society of Plant Physiologist v.Ⅴ Measuring fast fluorescence transients to address environmental questions: the JIP test Strasser,B.J.;R.J.StrasserMathis,P.(ed.)
  26. Probing photosynthesis: Mechanism, regulation and adaptation The fluorescence transient as a tool to characterize and screen photosynthetic samples Strasser,R.J.;A.Srivastava;M.Tsimilli-Michael;Yunus,M.(ed.);U.Pathre(ed.);P.Mohanty(ed.)
  27. Annu. Rev. Plant Physiol. v.38 Some molecular aspects of plant peroxidase: Biosynthetic studies Van Huystee,R.B. https://doi.org/10.1146/annurev.arplant.38.1.205
  28. Anal. Biochem. v.44 An improved procedure using ferricyanide for detecting catalase isoenzyme Woodbury,W.;A.K.Spencer;M.A.Sthamann https://doi.org/10.1016/0003-2697(71)90375-7